

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 Data Sheet

High-Performance, 16-bit Digital Signal Controllers

 $\ensuremath{\textcircled{}^\circ}$ 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

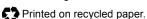
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

High-Performance, 16-bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

High-Performance DSC CPU:

- Modified Harvard architecture
- C compiler optimized instruction set
- · 16-bit wide data path
- · 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 83 base instructions: mostly 1 word/1 cycle
- Two 40-bit accumulators with rounding and saturation options
- · Flexible and powerful addressing modes:
 - Indirect
 - Modulo
 - Bit-Reversed
- Software stack
- 16 x 16 fractional/integer multiply operations
- · 32/16 and 16/16 divide operations
- Single-cycle multiply and accumulate:
- Accumulator write back for DSP operations
- Dual data fetch
- Up to ±16-bit shifts for up to 40-bit data

Direct Memory Access (DMA):

- · 8-channel hardware DMA
- Up to 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most peripherals support DMA

Timers/Capture/Compare/PWM:

- Timer/Counters, up to five 16-bit timers:
 - Can pair up to make two 32-bit timers
 - One timer runs as a Real-Time Clock with an external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to four channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to four channels):
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode
- Hardware Real-Time Clock/Calendar (RTCC):
 - Provides clock, calendar, and alarm functions

Interrupt Controller:

- 5-cycle latency
- 118 interrupt vectors
- · Up to 53 available interrupt sources
- · Up to three external interrupts
- Seven programmable priority levels
- · Five processor exceptions

Digital I/O:

- · Peripheral pin Select functionality
- Up to 35 programmable digital I/O pins
- · Wake-up/Interrupt-on-Change for up to 21 pins
- Output pins can drive from 3.0V to 3.6V
- Up to 5V output with open drain configuration
- · All digital input pins are 5V tolerant
- 4 mA sink on all I/O pins

On-Chip Flash and SRAM:

- Flash program memory (up to 128 Kbytes)
- Data SRAM (up to 16 Kbytes)
- Boot, Secure, and General Security for program Flash

System Management:

- · Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low jitter PLL
- Power-up Timer
- Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep, and Doze modes with fast wake-up

Analog-to-Digital Converters (ADCs):

- 10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion:
 - Two and four simultaneous samples (10-bit ADC)
 - Up to nine input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
 - Conversion possible in Sleep mode
 - ±2 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity

Audio Digital-to-Analog Converter (DAC):

- 16-bit Dual Channel DAC module
- 100 Ksps maximum sampling rate
- Second-Order Digital Delta-Sigma Modulator

Comparator Module:

• Two analog comparators with programmable input/output configuration

CMOS Flash Technology:

- · Low-power, high-speed Flash technology
- Fully static design
- 3.3V (±10%) operating voltage
- · Industrial and Extended temperature
- · Low power consumption

Motor Control Peripherals:

- 6-channel 16-bit Motor Control PWM:
 - Three duty cycle generators
 - Independent or Complementary mode
 - Programmable dead time and output polarity
 - Edge-aligned or center-aligned
 - Manual output override control
 - One Fault input
 - Trigger for ADC conversions
 - PWM frequency for 16-bit resolution
 (@ 40 MIPS) = 1220 Hz for Edge-Aligned mode, 610 Hz for Center-Aligned mode
 - PWM frequency for 11-bit resolution
 (@ 40 MIPS) = 39.1 kHz for Edge-Aligned mode, 19.55 kHz for Center-Aligned mode
- 2-channel 16-bit Motor Control PWM:
 - One duty cycle generator
 - Independent or Complementary mode
 - Programmable dead time and output polarity
 - Edge-aligned or center-aligned
 - Manual output override control
 - One Fault input
 - Trigger for ADC conversions
 - PWM frequency for 16-bit resolution
 (@ 40 MIPS) = 1220 Hz for Edge-Aligned mode, 610 Hz for Center-Aligned mode
 - PWM frequency for 11-bit resolution
 (@ 40 MIPS) = 39.1 kHz for Edge-Aligned mode, 19.55 kHz for Center-Aligned mode
- · 2-Quadrature Encoder Interface module:
 - Phase A, Phase B, and index pulse input
 - 16-bit up/down position counter
 - Count direction status
 - Position Measurement (x2 and x4) mode
 - Programmable digital noise filters on inputs
 - Alternate 16-bit Timer/Counter mode
 - Interrupt on position counter rollover/underflow

Communication Modules:

- 4-wire SPI (up to two modules):
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C™:
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART (up to two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA[®] encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN™ module) 2.0B active:
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and three masks
 - Loopback, Listen Only and Listen All
 - Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet[™] addressing support
- Parallel Master Slave Port (PMP/EPSP):
 - Supports 8-bit or 16-bit data
 - Supports 16 address lines
- Programmable Cyclic Redundancy Check (CRC):
 - Programmable bit length for the CRC generator polynomial (up to 16-bit length)
 - 8-deep, 16-bit or 16-deep, 8-bit FIFO for data input

Packaging:

- 28-pin SDIP/SOIC/QFN-S
- 44-pin TQFP/QFN

Note:	See the device variant table for exact	t						
	peripheral features per device.							

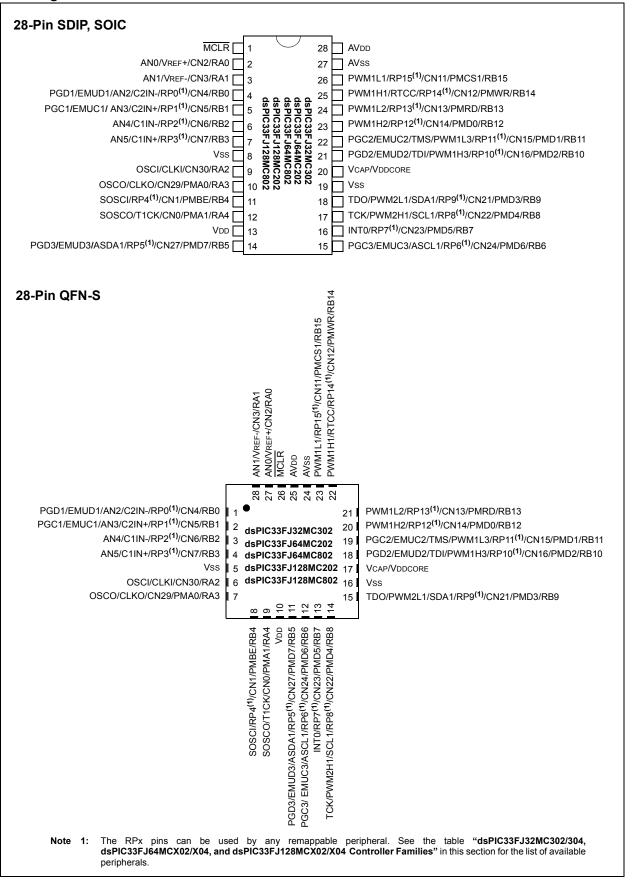
dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04 PRODUCT FAMILIES

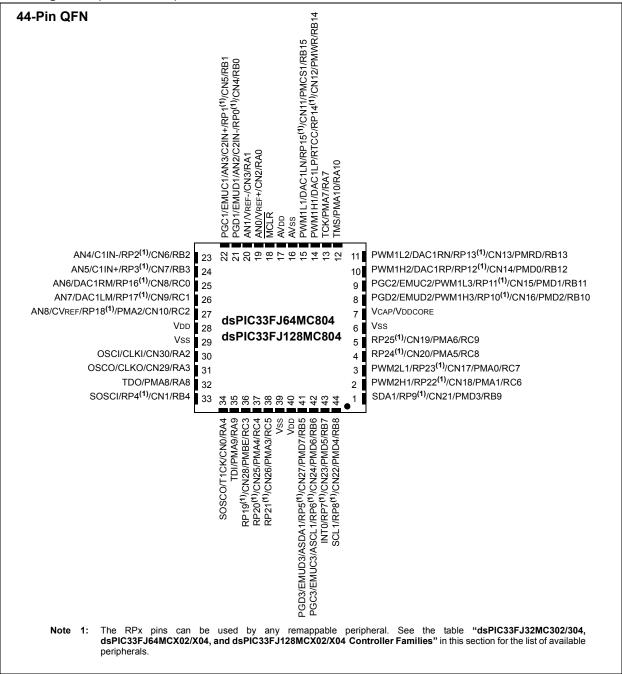
The device names, pin counts, memory sizes, and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 Controller Families

						F	Remap	pable F	Periphe	ral									er)			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	Motor Control PWM (Channels) ⁽³⁾	Quadrature Encoder Interface	UART	SPI	ECANTM	External Interrupts ⁽⁴⁾	RTCC	I ² C™	CRC Generator	10-bit/12-bit ADC (Channels)	6-pin 16-bit DAC	Analog Comparator (2 Channels/Voltage Regulator)	8-bit Parallel Master Port (Address Lines)	I/O Pins	Packages
dsPIC33FJ128MC804	44	128	16	26	5	4	4	6, 2	2	2	2	1	3	1	1	1	9	1	1/1	11	35	QFN TQFP
dsPIC33FJ128MC802	28	128	16	16	5	4	4	6, 2	2	2	2	1	3	1	1	1	6	0	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ128MC204	44	128	8	26	5	4	4	6, 2	2	2	2	0	3	1	1	1	9	0	1/1	11	35	QFN TQFP
dsPIC33FJ128MC202	28	128	8	16	5	4	4	6, 2	2	2	2	0	3	1	1	1	6	0	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ64MC804	44	64	16	26	5	4	4	6, 2	2	2	2	1	3	1	1	1	9	1	1/1	11	35	QFN TQFP
dsPIC33FJ64MC802	28	64	16	16	5	4	4	6, 2	2	2	2	1	3	1	1	1	6	0	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ64MC204	44	64	8	26	5	4	4	6, 2	2	2	2	0	3	1	1	1	9	0	1/1	11	35	QFN TQFP
dsPIC33FJ64MC202	28	64	8	16	5	4	4	6, 2	2	2	2	0	3	1	1	1	6	0	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ32MC304	44	32	4	26	5	4	4	6, 2	2	2	2	0	3	1	1	1	9	0	1/1	11	35	QFN TQFP
dsPIC33FJ32MC302	28	32	4	16	5	4	4	6, 2	2	2	2	0	3	1	1	1	6	0	1/0	2	21	SDIP SOIC QFN-S

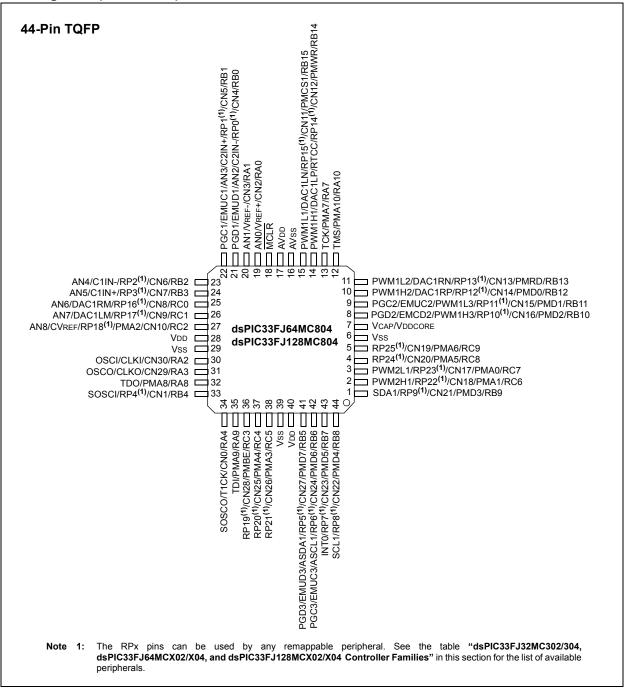
 Note
 1:
 RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except dsPIC33FJ32MC302/304, which include 1 Kbyte of DMA RAM.

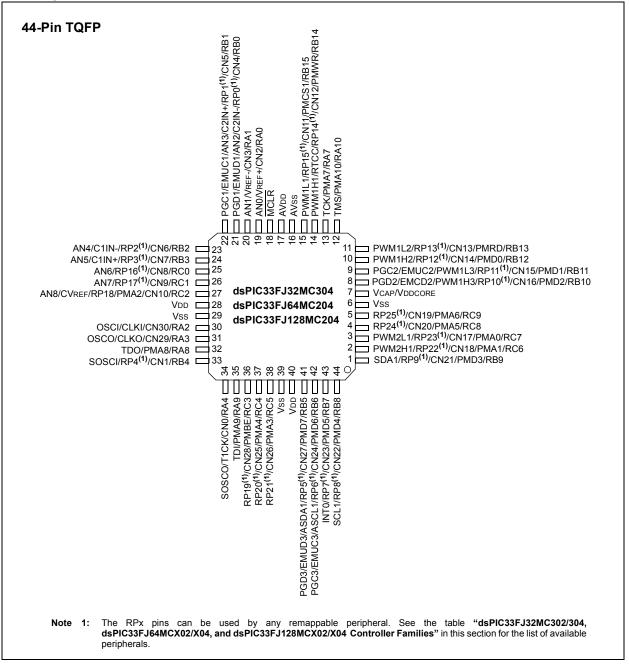

2: Only four out of five timers are remappable.


3: Only PWM fault pins are remappable.

4: Only two out of three interrupts are remappable.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04


Pin Diagrams



44-Pin QFN	PGC1/EMUC1/AN3/C2IN+/RP1(1)/CN5/RB1 PGD1/EMUD1/AN2/C2IN-/RP0(1)/CN4/RB0 AN1/NREF-/CN3/RA1 AN0/NREF+/CN2/RA0 MCLR AV0D AV1 AV0D PV/M1L1/RP15(1)/CN11/PMCS1/RB15 PV/M1L1/RP15(1)/CN12/PM/WR/RB14 TCK/PMA7/RA7 TCK/PMA7/RA7 TCK/PMA7/RA7	
AN4/C1IN-/RP2 ⁽¹⁾ /CN6/RB2 AN5/C1IN+/RP3 ⁽¹⁾ /CN7/RB3 4 AN6/RP16 ⁽¹⁾ /CN8/RC0 25 AN7/RP17 ⁽¹⁾ /CN9/RC1 26 AN8/CVREF/RP18 ⁽¹⁾ /PMA2/CN10/RC2 27 VDD 28 VSS 29 OSCI/CLKI/CN30/RA2 30 OSCO/CLKO/CN29/RA3 31 TD0/PMA8/RA8 32 SOSCI/RP4 ⁽¹⁾ /CN1/RB4	22 12 22 60 80 12 99 92 42 62 62 dsPIC33FJ32MC304 dsPIC33FJ64MC204 dsPIC33FJ128MC204 dsPIC33FJ128MC204	11 PWM1L2/RP13 ⁽¹⁾ /CN13/PMRD/RB13 10 PWM1H2/RP12 ⁽¹⁾ /CN14/PMD0/RB12 9 PGC2/EMUC2/PWM1L3/RP11 ⁽¹⁾ /CN15/PMD1/RB11 8 PGD2/EMUD2/PWM1H3/RP10 ⁽¹⁾ /CN16/PMD2/RB10 7 VCAP/VDDCORE 6 VSS 5 RP25 ⁽¹⁾ /CN19/PMA6/RC9 4 RP24 ⁽¹⁾ /CN20/PMA5/RC8 3 PWM2L1/RP23 ⁽¹⁾ /CN17/PMA0/RC7 2 PWM2H1/RP2 ⁽¹⁾ 2/CN18/PMA1/RC6 1 SDA1/RP9 ⁽¹⁾ /CN21/PMD3/RB9
	SOSCO/T1CK/CN0/RA4 TDI/PMA9/RA9 RP19 ⁽¹⁾ /CN28/PMBE/RC3 RP20 ⁽¹⁾ /CN28/PMBE/RC3 RP21 ⁽¹⁾ /CN28/PMBE/RC3 VS8 VD8 PGD3/EMUD3/ASDA1/RP5 ⁽¹⁾ /CN27/PMD7/RB5 PGC3/EMUC3/ASCL1/RP6 ⁽¹⁾ /CN22/PMD6/RB6 INT0/RP7 ⁽¹⁾ /CN22/PMD5/RB7 SCL1/RP8 ⁽¹⁾ /CN22/PMD5/RB7 SCL1/RP8 ⁽¹⁾ /CN22/PMD4/RB8	
		ipheral. See the table "dsPIC33FJ32MC302/304, ontroller Families" in this section for the list of available

© 2008 Microchip Technology Inc.

Table of Contents

dsPIC	C33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 Product Families						
1.0	Device Overview	13					
2.0	CPU	19					
3.0	Memory Organization						
4.0	Flash Program Memory	67					
5.0	Resets	73					
6.0	Interrupt Controller	81					
7.0	Direct Memory Access (DMA)						
8.0	Oscillator Configuration	135					
9.0	Power-Saving Features	147					
10.0	I/O Ports	149					
	Timer1						
12.0	Timer2/3 And TImer4/5 feature	183					
13.0	Input Capture	189					
	Output Compare						
	Motor Control PWM Module						
	Quadrature Encoder Interface (QEI) Module						
	Serial Peripheral Interface (SPI)						
	Inter-Integrated Circuit (I ² C [™])						
	Enhanced CAN (ECAN™) Module						
21.0	10-bit/12-bit Analog-to-Digital Converter (ADC1)						
22.0	Audio Digital-to-Analog Converter (DAC)	273					
23.0	Comparator Module						
	Real-Time Clock and Calendar (RTCC)						
25.0	Programmable Cyclic Redundancy Check (CRC) Generator	295					
	Parallel Master Port (PMP)						
27.0	Special Features						
	Instruction Set Summary						
	Development Support						
30.0	Electrical Characteristics	329					
31.0	Packaging Information						
Apper	ndix A: Revision History	385					
Index		387					
	/icrochip Web Site						
	ustomer Change Notification Service						
	Customer Support						
	Reader Response						
Produ	Product Identification System						

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

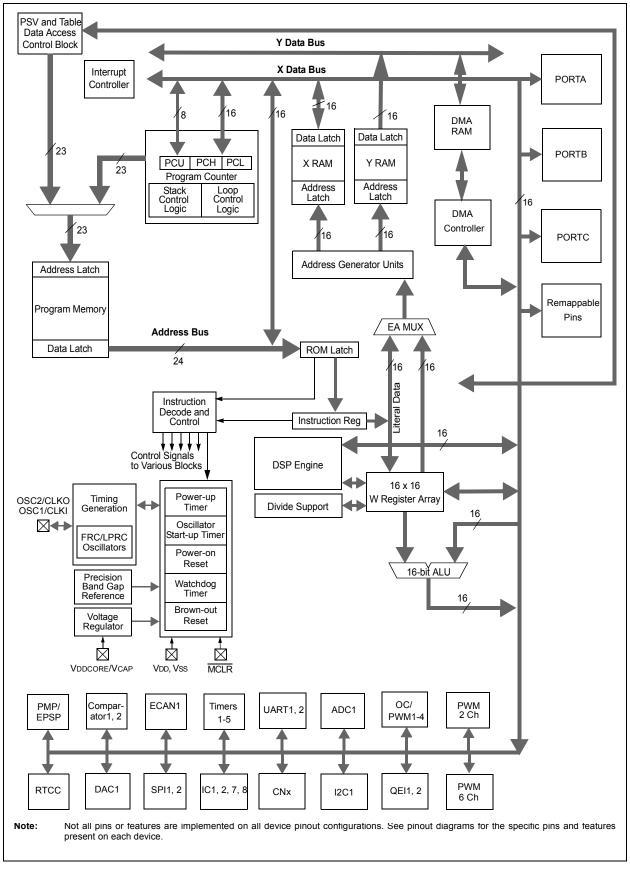
Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System


Register on our website at www.microchip.com to receive the most current information on all of our products.


NOTES:

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33F Family Reference Manual", which is available from the Microchip website (www.microchip.com) This document contains device specific information for the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 Digital Signal Controller (DSC) Devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high performance 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 families of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

Pin Name	Pin Type	Buffer Type	Description
AN0-AN8	1	Analog	Analog input channels.
CLKI CLKO	I O	•	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	I/O	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI		ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	0		32.768 kHz low-power oscillator crystal output.
CN0-CN30	Ι	ST	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
IC1-IC2		ST	Capture inputs 1/2
IC7-IC8		ST	Capture inputs 7/8.
OCFA		ST	Compare Fault A input (for Compare Channels 1, 2, 3 and 4).
OC1-OC4	0	—	Compare outputs 1 through 4.
INT0		ST	External interrupt 0.
INT1		ST	External interrupt 1.
INT2		ST	External interrupt 2.
RA0-RA4	I/O	ST	PORTA is a bidirectional I/O port.
RA7-RA10	I/O	ST	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.
RC0-RC9	I/O	ST	PORTC is a bidirectional I/O port.
T1CK		ST	Timer1 external clock input.
T2CK		ST	Timer2 external clock input.
T3CK		ST	Timer3 external clock input.
T4CK		ST	Timer4 external clock input.
T5CK		ST	Timer5 external clock input.
U1CTS U1RTS U1RX U1TX	 	ST — ST —	UART1 clear to send. UART1 ready to send. UART1 receive. UART1 transmit.
U2CTS		ST	UART2 clear to send.
U2RTS	0	—	UART2 ready to send.
U2RX		ST	UART2 receive.
U2TX	0	—	UART2 transmit.
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.
SDI1	I	ST	SPI1 data in.
SDO1	O	—	SPI1 data out.
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	SPI2 data in.
SDO2	O		SPI2 data out.
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	Alternate synchronous serial data input/output for I2C1.
ST = 5		gger input w	input or outputAnalog = Analog inputP = Powervith CMOS levelsO = OutputI = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS

IABLE 1-1: Pin Name	Pin Type	Buffer Type	Description
TMS	I	ST	JTAG Test mode select pin.
TCK	Í	ST	JTAG test clock input pin.
TDI	Í	ST	JTAG test data input pin.
TDO	Ó	_	JTAG test data output pin.
INDX1	I	ST	Quadrature Encoder Index1 Pulse input.
QEA1	I	ST	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
QEB1	I	ST	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
UPDN1	0	CMOS	Position Up/Down Counter Direction State.
INDX2	1	ST	Quadrature Encoder Index2 Pulse input.
QEA2	I	ST	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
QEB2	I	ST	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
UPDN2	0	CMOS	Position Up/Down Counter Direction State.
C1RX	I	ST	ECAN1 bus receive pin.
C1TX	0	—	ECAN1 bus transmit pin.
RTCC	0	—	Real-Time Clock Alarm Output.
CVREF	0	ANA	Comparator Voltage Reference Output.
C1IN-	I	ANA	Comparator 1 Negative Input.
C1IN+	I	ANA	Comparator 1 Positive Input.
C1OUT	0	—	Comparator 1 Output.
C2IN-	I	ANA	Comparator 2 Negative Input.
C2IN+	I	ANA	Comparator 2 Positive Input.
C2OUT	0	—	Comparator 2 Output.
PMA0	I/O	TTL/ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	I/O	TTL/ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2 -PMPA10	0	—	Parallel Master Port Address (Demultiplexed Master Modes).
PMBE	0	—	Parallel Master Port Byte Enable Strobe.
PMCS1	0		Parallel Master Port Chip Select 1 Strobe.
PMD0-PMPD7	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master mode) or Address/Data (Multiplexed Master modes).
PMRD	0	_	Parallel Master Port Read Strobe.
PMWR	0		Parallel Master Port Write Strobe.
DAC1RN	0		DAC1 Negative Output.
DAC1RP	0	_	DAC1 Positive Output.
DAC1RM	0	—	DAC1 Output indicating middle point value (typically 1.65V).
DAC2RN	0		DAC2 Negative Output.
DAC2RP	Ō	_	DAC2 Positive Output.
DAC2RM	0	—	DAC2 Output indicating middle point value (typically 1.65V).
Legend: CMOS			
o -			

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

O = Output

I = Input

Pin Name	Pin Type	Buffer Type	Description
FLTA1	1	ST	PWM1 Fault A input.
PWM1L1	0		PWM1 Low output 1
PWM1H1	0		PWM1 High output 1
PWM1L2	0		PWM1 Low output 2
PWM1H2	0		PWM1 High output 2
PWM1L3	0		PWM1 Low output 3
PWM1H3	0		PWM1 High output 3
FLTA2	I	ST	PWM2 Fault A input.
PWM2L1	0	—	PWM2 Low output 1
PWM2H1	0	—	PWM2 High output 1
PGD1/EMUD1	I/O	ST	Data I/O pin for programming/debugging communication channel 1.
PGC1/EMUC1	I	ST	Clock input pin for programming/debugging communication channel 1.
PGD2/EMUD2	I/O	ST	Data I/O pin for programming/debugging communication channel 2.
PGC2/EMUC2	I	ST	Clock input pin for programming/debugging communication channel 2.
PGD3/EMUD3	I/O	ST	Data I/O pin for programming/debugging communication channel 3.
PGC3/EMUC3	I	ST	Clock input pin for programming/debugging communication channel 3.
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	Positive supply for analog modules.
AVss	Р	Р	Ground reference for analog modules.
Vdd	Р	—	Positive supply for peripheral logic and I/O pins.
VDDCORE	Р	—	CPU logic filter capacitor connection.
Vss	Р	—	Ground reference for logic and I/O pins.
VREF+	I	Analog	Analog voltage reference (high) input.
VREF-		Analog	Analog voltage reference (low) input.
VREF-	•	7 maiog	

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Ar

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 TTL = TTL input buffer
 O = Output

P = Power I = Input

© 2008 Microchip Technology Inc.

NOTES:

2.0 CPU

Note: This data sheet summarizes the features of dsPIC33FJ32MC302/304, the dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", "Section 2. CPU" (DS70204), which is available from the Microchip website (www.microchip.com).

2.1 Overview

The dsPIC33FJ32MC302/304. dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any time.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 2-1, and the programmer's model for the dsPIC33FJ32MC302/ 304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 is shown in Figure 2-2.

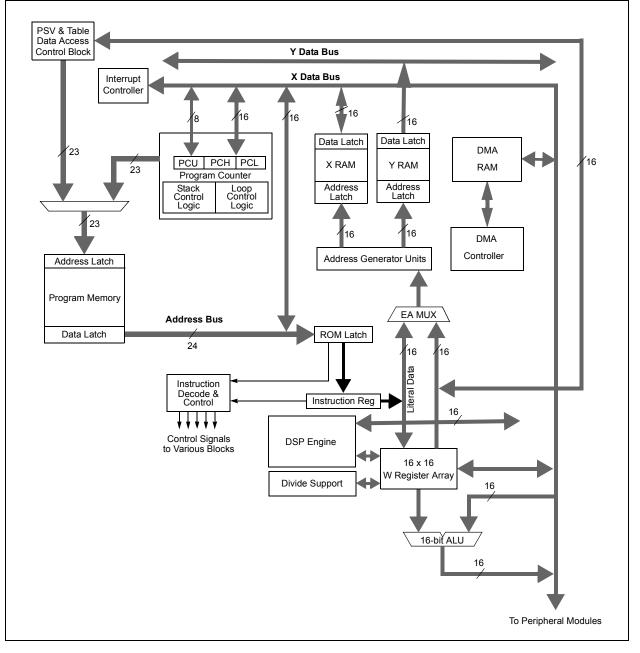
2.2 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

2.3 DSP Engine Overview


The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

2.4 Special MCU Features

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

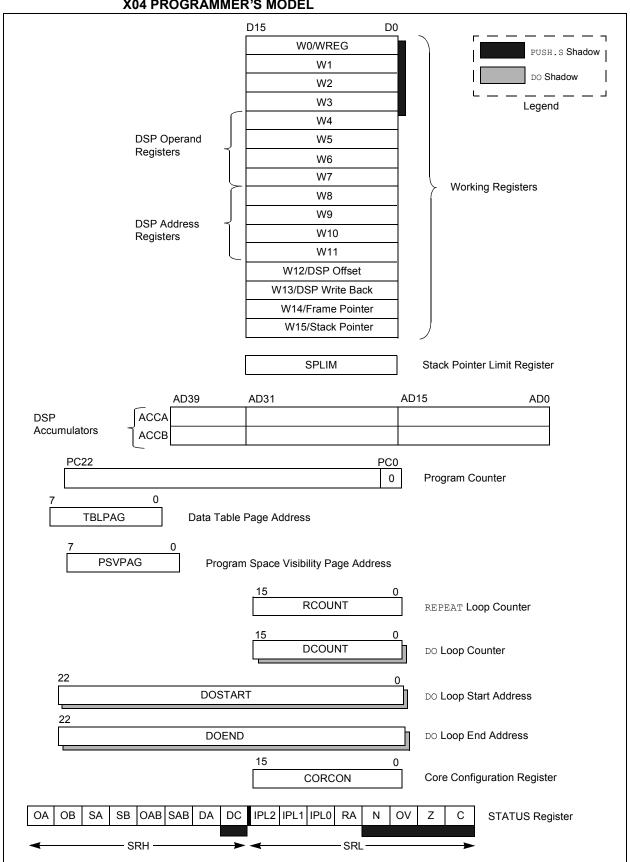


FIGURE 2-2: dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/ X04 PROGRAMMER'S MODEL

2.5 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15	•						bit 8
(0)	(0)	(0)					
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit C
Legend:							
C = Clear only	bit	R = Readable	bit	U = Unimpler	nented bit, read	as '0'	
S = Set only bi	t	W = Writable	bit	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15		ator A Overflov	· Statua hit				
DIL 15		tor A overflow					
		tor A has not c					
bit 14	OB: Accumula	ator B Overflov	v Status bit				
	1 = Accumula	tor B overflowe	ed				
		tor B has not c					
bit 13		ator A Saturatio					
	 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated 						
bit 12	SB: Accumulator B Saturation 'Sticky' Status bit ⁽¹⁾						
		tor B is saturat tor B is not sat		en saturated at	some time		
bit 11	0AB: OA O	B Combined A	ccumulator O	verflow Status	bit		
	 1 = Accumulators A or B have overflowed 0 = Neither Accumulators A or B have overflowed 						
bit 10	SAB: SA SI	3 Combined Ad	cumulator (Si	ticky) Status bi	t(4)		
		tors A or B are			urated at some	time in the past	:
bit 9	DA: DO Loop	Active bit					
	1 = DO loop in 0 = DO loop no	progress					
bit 8	•	J Half Carry/Bo	prrow bit				
		•		for byte-sized o	data) or 8th low-	order bit (for wo	rd-sized data
	0 = No carry-	oult occurred out from the 4 he result occur		bit (for byte-siz	ed data) or 8th	low-order bit (f	or word-sized
Note 1: Thi	s bit can be rea	ad or cleared (I	not set).				
Lev					RCON<3>) to fo 3> = 1. User in		

3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

REGISTER 2-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress
	0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (two's complement). It indicates an overflow of a magnitude that causes the sign bit to change state.
	1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
	0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	1 = An operation that affects the Z bit has set it at some time in the past
	0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit can be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
 - 4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0					
_		_	US	EDT ⁽¹⁾		DL<2:0>						
bit 15				•			bit 8					
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0					
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF					
bit 7							bit (
Legend:		C = Clear on	v bit									
R = Readable b	oit	W = Writable		-n = Value at	POR	'1' = Bit is set						
0' = Bit is cleare		'x = Bit is unk			mented bit, rea							
				· · · ·								
	-	nted: Read as '										
bit 12		Itiply Unsigned		rol bit								
		ine multiplies a										
bit 11	-	jine multiplies a ○ Loop Termina	-	_;+(1)								
		e executing DO			eration							
	0 = No effect	•			cration							
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	oits								
	111 = 7 DO loops active											
	•											
	•											
	001 = 1 DO k 000 = 0 DO k											
bit 7	SATA: ACCA	A Saturation En	able bit									
		ator A saturatio ator A saturatio										
bit 6	SATB: ACCE	3 Saturation En	able bit									
		ator B saturatio ator B saturatio										
bit 5	SATDW: Dat	a Space Write	from DSP Eng	gine Saturation	Enable bit							
		ice write satura ice write satura										
bit 4	•	cumulator Satu		Select bit								
	1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation)											
bit 3		nterrupt Priority	,	bit 3 ⁽²⁾								
	1 = CPU inte	errupt priority le errupt priority le	vel is greater	than 7								
bit 2		m Space Visibil										
		space visible in										

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

REGISTER 2-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 1	RND: Rounding Mode Select bit
	1 = Biased (conventional) rounding enabled
	0 = Unbiased (convergent) rounding enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode enabled for DSP multiply ops

- 0 = Fractional mode enabled for DSP multiply ops
- **Note 1:** This bit is always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

2.6 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "*dsPIC30F/33F Programmer's Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

2.6.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

2.6.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

2.7 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)


A block diagram of the DSP engine is shown in Figure 2-3.

TABLE 2-1: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	A = (x - y)2	No
EDAC	A = A + (x - y)2	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	A = x 2	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

FIGU	JRE	2-3:	

DSP ENGINE BLOCK DIAGRAM

2.7.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed two the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit two's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands direct a 16-bit result, and word operands direct a 32-bit result to the specified registers in the W array.

2.7.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

2.7.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits

or

• SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: ACCB saturated (bit 31 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 6.0 "Interrupt Controller"**). This allows the user application to take immediate action, for example, to correct system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and is saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, the SA and SB bits generate an arithmetic warning trap when saturation is disabled. The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

- Bit 39 Overflow and Saturation:
- When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).
- Bit 31 Overflow and Saturation:
 When bit 31 overflow and acturatio

When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.

 Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

2.7.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

2.7.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 2.7.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

2.7.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

2.7.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

3.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features				
	of the dsPIC33FJ32MC302/304,				
	dsPIC33FJ64MCX02/X04, and				
	dsPIC33FJ128MCX02/X04 families of				
	devices. It is not intended to be a compre-				
	hensive reference source. To complement				
	the information in this data sheet, refer to				
	the "dsPIC33F Family Reference Manual",				
	"Section 4. Program Memory" (DS70203),				
	which is available from the Microchip				
	website (www.microchip.com).				

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

3.1 Program Address Space

The program address memory space of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 3.6 "Interfacing Program and Data Memory Spaces".

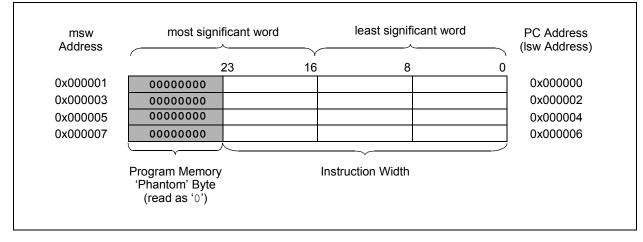
User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices is shown in Figure 3-1.

FIGURE 3-1:	PROGRAM MEMORY MAP FOR dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/
	X04, AND dsPIC33FJ128MCX02/X04 DEVICES

	dsPIC33FJ32MC302/304 dsPIC33FJ64MCX02/X04 dsPIC33FJ128MCX02/X04					
T	GOTO Instruction	GOTO Instruction	GOTO Instruction	0x000000 0x000002		
I Ĩ	Reset Address	Reset Address	Reset Address	0x000002 0x000004		
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x00000FE		
	Reserved	Reserved	Reserved	0x000100 0x000104		
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE		
D.	User Program Flash Memory (11264 instructions)	User Program		0x000200		
pac	(Flash Memory		0x0057FE		
User Memory Space		(22016 instructions)	User Program Flash Memory (44032 instructions)	0x005800		
User M				0x00ABFE 0x00AC00		
	Unimplemented					
	(Read '0's)	Unimplemented		0x0157FE		
	, ,	(Read '0's)		0x015800		
		(********	Unimplemented			
			(Read '0's)			
				0x7FFFFE		
	Reserved	Reserved	Reserved	0x800000		
/ Space	Device Configuration	Device Configuration	Device Configuration	0xF7FFE 0xF80000		
	Registers		Registers	0xF80017		
Configuration Memory Space	Reserved	Reserved	Reserved	0xF80018		
figu				0xFEFFFE		
Con	DEVID (2)	DEVID (2)	DEVID (2)	0xFF0000 0xFF0002		
_▼	Reserved	Reserved	Reserved	0xFFFFE		
Note:	Memory areas are not s	hown to scale.				

3.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 3-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

3.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 6.1 "Interrupt Vector Table"**.

FIGURE 3-2: PROGRAM MEMORY ORGANIZATION

3.2 Data Address Space

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 3-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 3.6.3 "Reading Data From Program Memory Using Program Space Visibility").

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices implement up to 16 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte is returned.

3.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

3.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

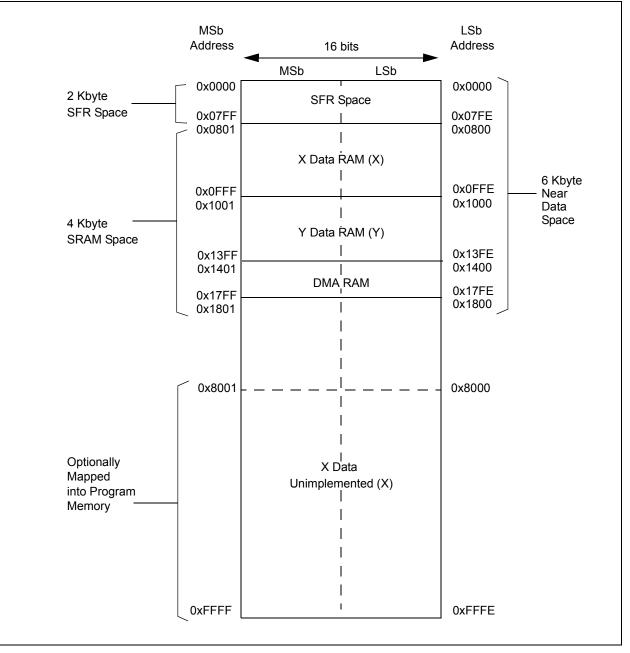
A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

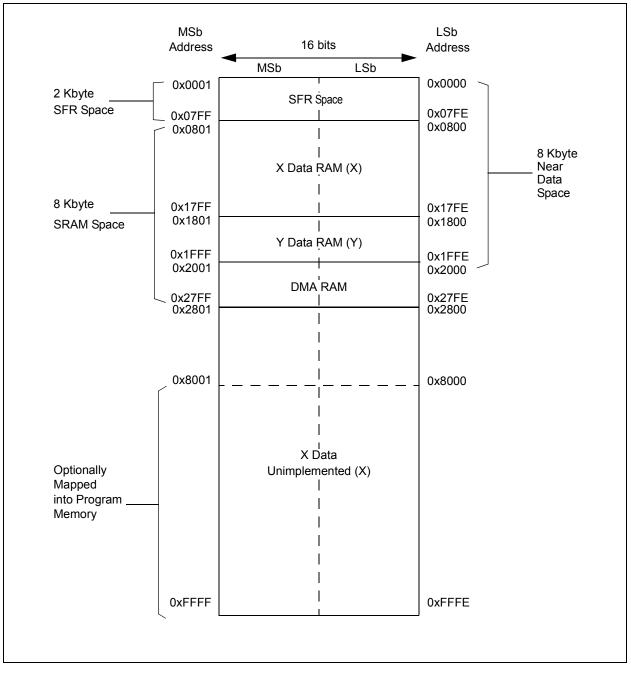
A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

3.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 core and peripheral modules for controlling the operation of the device.


SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.


3.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an address pointer.

FIGURE 3-3: DATA MEMORY MAP FOR dsPIC33FJ32MC302/304 DEVICES WITH 4 KB RAM

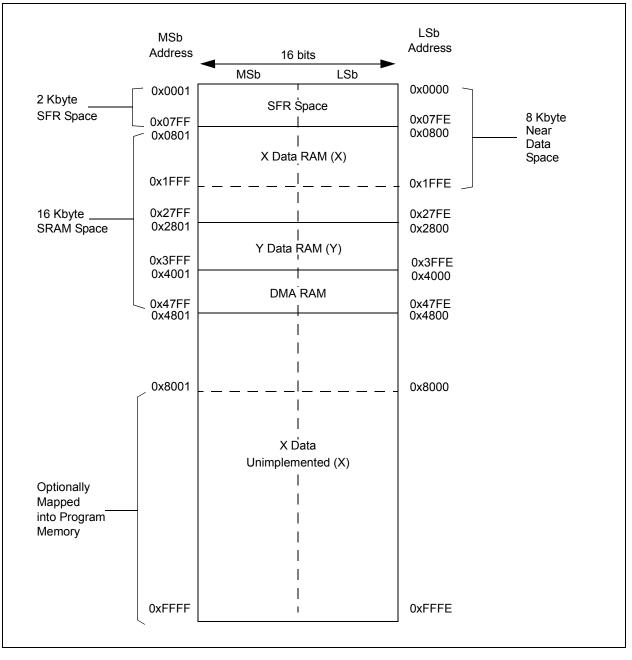


FIGURE 3-4: DATA MEMORY MAP FOR dsPIC33FJ128MC202/204 AND dsPIC33FJ64MC202/ 204 DEVICES WITH 8 KB RAM

© 2008 Microchip Technology Inc.

FIGURE 3-5: DATA MEMORY MAP FOR dsPIC33FJ128MC802/804 AND dsPIC33FJ64MC802/ 804 DEVICES WITH 16 KB RAM

3.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

3.2.6 DMA RAM

Every dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 device contains up to 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

SFR Num SHR Bit i Bit i <th< th=""><th>TABLE 3-1:</th><th></th><th>CPU CORE REGISTERS MAP</th><th>E REGI</th><th>STERS</th><th>MAP</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>·</th><th></th><th></th><th></th></th<>	TABLE 3-1:		CPU CORE REGISTERS MAP	E REGI	STERS	MAP										·																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
000 000 00000 0000 0000	SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
000 000 <td>WREGO</td> <td>0000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Working Re</td> <td>jister 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	WREGO	0000								Working Re	jister 0								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
000 ····································	WREG1	0002							-	Working Re(jister 1								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0006 ····································	WREG2	0004								Working Re	jister 2								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
000 ····································	WREG3	0006								Working Rec	jister 3								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
000 000 <td>WREG4</td> <td>8000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Working Rec</td> <td>jister 4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	WREG4	8000								Working Rec	jister 4								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0000 0000 <th< td=""><td>WREG5</td><td>000A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Working Rec</td><td>jister 5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>	WREG5	000A								Working Rec	jister 5								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0006 0016 0010 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0101 010 0102 010 0103 010 0104 010 0105 010 0104 010 0105 010 0106 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010	WREG6	0000								Working Re	jister 6								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
000 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0100 0100 0100 0100 0100 0100 0100 0100 0100 <tr <tr<="" td=""><td>WREG7</td><td>000E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Working Re</td><td>jister 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></tr> <tr><td>012 Working Register () Monting Register () Mont</td><td>WREG8</td><td>0010</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Working Rec</td><td>jister 8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></tr> <tr><td>001 </td><td>WREG9</td><td>0012</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Working Rec</td><td>jister 9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></tr> <tr><td>0016 Nontrolling Register 13. Nontrolling Register 13. Nontrolling Register 13. Nontrolling Register 14. Nontroling Register 14. Nontrolling Register 14.<td>WREG10</td><td>0014</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></td></tr> <tr><td>0018 ••••••••••••••••••••••••••••••••••••</td><td>WREG11</td><td>0016</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Norking Reg</td><td>ister 11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></tr> <tr><td>0010 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 <th< td=""><td>WREG12</td><td>0018</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<></td></tr> <tr><td>0010 0011 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 <th< td=""><td>WREG13</td><td>001A</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<></td></tr> <tr><td>0010 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 <th< td=""><td>WREG14</td><td>001C</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<></td></tr> <tr><td>0020 Stack Pointer Limit Register ACCAL 0021 </td><td>WREG15</td><td>001E</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0800</td></tr> <tr><td>002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003<td>SPLIM</td><td>0020</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Stac</td><td>k Pointer Lin</td><td>nit Register</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></td></tr> <tr><td>00240024CCCH-SI-CCCH0025002</td><td>ACCAL</td><td>0022</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ACCA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></tr> <tr><td>00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000</td><td>ACCAH</td><td>0024</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ACCAI</td><td>Ţ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></tr> <tr><td>0028 </td><td>ACCAU</td><td>0026</td><td></td><td></td><td></td><td>ACCA<</td><td>39></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ACC</td><td>AU</td><td></td><td></td><td></td><td>XXXX</td></tr> <tr><td>00240024CCBH00250026</td><td>ACCBL</td><td>0028</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ACCB</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></tr> <tr><td>00200200200200200200200300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300</td><td>ACCBH</td><td>002A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ACCBI</td><td>т</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></tr> <tr><td>002PORTRANTICAL AND REGISTER003vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv</td><td>ACCBU</td><td>002C</td><td></td><td></td><td></td><td>ACCB<</td><td>39></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ACC</td><td>BU</td><td></td><td></td><td></td><td>XXXX</td></tr> <tr><td>0030Program Counter High Byte Register</td><td>PCL</td><td>002E</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Program</td><td>Counter Lov</td><td>v Word Regi</td><td>ster</td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></tr> <tr><td>00320Table Page Address Pointer Register00340-0<td< td=""><td>РСН</td><td>0030</td><td>Ι</td><td>Ι</td><td> </td><td> </td><td>Ι</td><td>Ι</td><td> </td><td>Ι</td><td></td><td></td><td>Program</td><td>1 Counter F</td><td>ligh Byte R€</td><td>egister</td><td></td><td></td><td>0000</td></td<></td></tr> <tr><td>0034 - - - - Program Memory Visibility Page Address Pointer Register 0036 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<td>TBLPAG</td><td>0032</td><td>Ι</td><td>Ι</td><td> </td><td> </td><td>Ι</td><td>Ι</td><td> </td><td>Ι</td><td></td><td></td><td>Table Pa</td><td>age Addres:</td><td>s Pointer Rt</td><td>egister</td><td></td><td></td><td>0000</td></td></tr> <tr><td>0036 Pertonal Counter Register 11 0038 Pertonal Counter Register Repeat Lop Counter Register Repeat Register</td><td>PSVPAG</td><td>0034</td><td>Ι</td><td>Ι</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>Ι</td><td></td><td>Progra</td><td>am Memory /</td><td>Visibility Pa</td><td>ge Address</td><td>Pointer Rec</td><td>gister</td><td></td><td>0000</td></tr> <tr><td>1038 DCOUNT DCOUNT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>RCOUNT</td><td>0036</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Repe</td><td>at Loop Coui</td><td>nter Register</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></tr> <tr><td></td><td>DCOUNT</td><td>0038</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>DCOUNT<</td><td>15:0></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></tr> <tr><td>Image: Image: Image:</td><td>DOSTARTL</td><td>003A</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DOST</td><td>ARTL<15:1</td><td>^</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>XXXX</td></tr> <tr><td>003E DORNDE<15:1- 0040 <</td><td>DOSTARTH</td><td>003C</td><td>Ι</td><td>Ι</td><td> </td><td> </td><td>Ι</td><td> </td><td> </td><td>Ι</td><td> </td><td>1</td><td></td><td></td><td>DOSTAR</td><td>TH<5:0></td><td></td><td></td><td>00xx</td></tr> <tr><td>0040 - - - - - - - - - - - - - - - - DORDH 0042 0042 004 00 SAB DA DC PL1 PL0 RA N OV Z C C 1 0044 - - U DL DL DL PL1 PL0 RA N OV Z C C 1 0044 - - U DL DL DL DL PL <td< td=""><td>DOENDL</td><td>003E</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DOE</td><td>NDL<15:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>XXXX</td></td<></td></tr> <tr><td>0042 0A 0B SA SB OAB SAB DA DC PL1 IPL0 RA N OV Z C 1 0044 US EDT L- US EDT 24.2:0- SATA SATB SATB ACCSAT PSV RND IF IF</td><td>DOENDH</td><td>0040</td><td>Ι</td><td>I</td><td>Ι</td><td>Ι</td><td> </td><td>Ι</td><td> </td><td>I</td><td>I</td><td>I</td><td></td><td></td><td>DOE</td><td>HDH</td><td></td><td></td><td>00xx</td></tr> <tr><td>I 0044 - - US EDT DL<2:0> SATB SATDW ACCSAT IPL3 PSV RND IF v 0046 XMODEN - - - US BWM<3:0> YWM<3:0> YWM<3:0> XWM<3:0> XWM<</td><td>SR</td><td>0042</td><td>OA</td><td>OB</td><td>SA</td><td>SB</td><td>OAB</td><td>SAB</td><td>DA</td><td>DC</td><td>IPL2</td><td>IPL1</td><td></td><td>RA</td><td>z</td><td>S</td><td>Z</td><td>ပ</td><td>0000</td></tr> <tr><td>v 0046 XMODEN YMODEN BWM<3:0> YWM<3:0> XWM<3:0></td><td>CORCON</td><td>0044</td><td>Ι</td><td>I</td><td> </td><td>SN</td><td>EDT</td><td></td><td>DL<2:0></td><td></td><td>SATA</td><td>SATB</td><td>DW</td><td>ACCSAT</td><td>IPL3</td><td>PSV</td><td>RND</td><td>ш</td><td>0000</td></tr> <tr><td></td><td>MODCON</td><td>0046</td><td>XMODEN</td><td>YMODEN</td><td> </td><td> </td><td></td><td>BWM</td><td><3:0></td><td></td><td></td><td>≻WM<</td><td>:3:0></td><td></td><td></td><td>×WM<</td><td><3:0></td><td></td><td>0000</td></tr>	WREG7	000E								Working Re	jister 7								0000	012 Working Register () Monting Register () Mont	WREG8	0010								Working Rec	jister 8								0000	001	WREG9	0012								Working Rec	jister 9								0000	0016 Nontrolling Register 13. Nontrolling Register 13. Nontrolling Register 13. Nontrolling Register 14. Nontroling Register 14. Nontrolling Register 14. <td>WREG10</td> <td>0014</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td>Vorking Reg</td> <td>ister 10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	WREG10	0014							~	Vorking Reg	ister 10								0000	0018 ••••••••••••••••••••••••••••••••••••	WREG11	0016								Norking Reg	ister 11								0000	0010 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 <th< td=""><td>WREG12</td><td>0018</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>	WREG12	0018							~	Vorking Reg	ister 12								0000	0010 0011 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0012 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 0013 <th< td=""><td>WREG13</td><td>001A</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>	WREG13	001A							~	Vorking Reg	ister 13								0000	0010 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 0020 <th< td=""><td>WREG14</td><td>001C</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>	WREG14	001C							~	Vorking Reg	ister 14								0000	0020 Stack Pointer Limit Register ACCAL 0021	WREG15	001E							~	Vorking Reg	ister 15								0800	002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 003 <td>SPLIM</td> <td>0020</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Stac</td> <td>k Pointer Lin</td> <td>nit Register</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>XXXX</td>	SPLIM	0020							Stac	k Pointer Lin	nit Register								XXXX	00240024CCCH-SI-CCCH0025002	ACCAL	0022								ACCA									XXXX	00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000	ACCAH	0024								ACCAI	Ţ								XXXX	0028	ACCAU	0026				ACCA<	39>							ACC	AU				XXXX	00240024CCBH00250026	ACCBL	0028								ACCB									XXXX	00200200200200200200200300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300	ACCBH	002A								ACCBI	т								XXXX	002PORTRANTICAL AND REGISTER003vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv	ACCBU	002C				ACCB<	39>							ACC	BU				XXXX	0030Program Counter High Byte Register	PCL	002E							Program	Counter Lov	v Word Regi	ster							XXXX	00320Table Page Address Pointer Register00340-0 <td< td=""><td>РСН</td><td>0030</td><td>Ι</td><td>Ι</td><td> </td><td> </td><td>Ι</td><td>Ι</td><td> </td><td>Ι</td><td></td><td></td><td>Program</td><td>1 Counter F</td><td>ligh Byte R€</td><td>egister</td><td></td><td></td><td>0000</td></td<>	РСН	0030	Ι	Ι			Ι	Ι		Ι			Program	1 Counter F	ligh Byte R€	egister			0000	0034 - - - - Program Memory Visibility Page Address Pointer Register 0036 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>TBLPAG</td> <td>0032</td> <td>Ι</td> <td>Ι</td> <td> </td> <td> </td> <td>Ι</td> <td>Ι</td> <td> </td> <td>Ι</td> <td></td> <td></td> <td>Table Pa</td> <td>age Addres:</td> <td>s Pointer Rt</td> <td>egister</td> <td></td> <td></td> <td>0000</td>	TBLPAG	0032	Ι	Ι			Ι	Ι		Ι			Table Pa	age Addres:	s Pointer Rt	egister			0000	0036 Pertonal Counter Register 11 0038 Pertonal Counter Register Repeat Lop Counter Register Repeat Register	PSVPAG	0034	Ι	Ι						Ι		Progra	am Memory /	Visibility Pa	ge Address	Pointer Rec	gister		0000	1038 DCOUNT DCOUNT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	RCOUNT	0036							Repe	at Loop Coui	nter Register								XXXX		DCOUNT	0038								DCOUNT<	15:0>								XXXX	Image:	DOSTARTL	003A							DOST	ARTL<15:1	^							0	XXXX	003E DORNDE<15:1- 0040 <	DOSTARTH	003C	Ι	Ι			Ι			Ι		1			DOSTAR	TH<5:0>			00xx	0040 - - - - - - - - - - - - - - - - DORDH 0042 0042 004 00 SAB DA DC PL1 PL0 RA N OV Z C C 1 0044 - - U DL DL DL PL1 PL0 RA N OV Z C C 1 0044 - - U DL DL DL DL PL PL <td< td=""><td>DOENDL</td><td>003E</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DOE</td><td>NDL<15:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>XXXX</td></td<>	DOENDL	003E							DOE	NDL<15:1>								0	XXXX	0042 0A 0B SA SB OAB SAB DA DC PL1 IPL0 RA N OV Z C 1 0044 US EDT L- US EDT 24.2:0- SATA SATB SATB ACCSAT PSV RND IF IF	DOENDH	0040	Ι	I	Ι	Ι		Ι		I	I	I			DOE	HDH			00xx	I 0044 - - US EDT DL<2:0> SATB SATDW ACCSAT IPL3 PSV RND IF v 0046 XMODEN - - - US BWM<3:0> YWM<3:0> YWM<3:0> XWM<3:0> XWM<	SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1		RA	z	S	Z	ပ	0000	v 0046 XMODEN YMODEN BWM<3:0> YWM<3:0> XWM<3:0>	CORCON	0044	Ι	I		SN	EDT		DL<2:0>		SATA	SATB	DW	ACCSAT	IPL3	PSV	RND	ш	0000		MODCON	0046	XMODEN	YMODEN				BWM	<3:0>			≻WM<	:3:0>			×WM<	<3:0>		0000
WREG7	000E								Working Re	jister 7								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
012 Working Register () Monting Register () Mont	WREG8	0010								Working Rec	jister 8								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
001	WREG9	0012								Working Rec	jister 9								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0016 Nontrolling Register 13. Nontrolling Register 13. Nontrolling Register 13. Nontrolling Register 14. Nontroling Register 14. Nontrolling Register 14. <td>WREG10</td> <td>0014</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td>Vorking Reg</td> <td>ister 10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	WREG10	0014							~	Vorking Reg	ister 10								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0018 ••••••••••••••••••••••••••••••••••••	WREG11	0016								Norking Reg	ister 11								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0010 0011 <th< td=""><td>WREG12</td><td>0018</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>	WREG12	0018							~	Vorking Reg	ister 12								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0010 0011 0012 0013 <th< td=""><td>WREG13</td><td>001A</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>	WREG13	001A							~	Vorking Reg	ister 13								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0010 0020 <th< td=""><td>WREG14</td><td>001C</td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td>Vorking Reg</td><td>ister 14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>	WREG14	001C							~	Vorking Reg	ister 14								0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0020 Stack Pointer Limit Register ACCAL 0021	WREG15	001E							~	Vorking Reg	ister 15								0800																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
002 003 003 <td>SPLIM</td> <td>0020</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Stac</td> <td>k Pointer Lin</td> <td>nit Register</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>XXXX</td>	SPLIM	0020							Stac	k Pointer Lin	nit Register								XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
00240024CCCH-SI-CCCH0025002	ACCAL	0022								ACCA									XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
00	ACCAH	0024								ACCAI	Ţ								XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0028	ACCAU	0026				ACCA<	39>							ACC	AU				XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
00240024CCBH00250026	ACCBL	0028								ACCB									XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
00200200200200200200200300	ACCBH	002A								ACCBI	т								XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
002PORTRANTICAL AND REGISTER003vv	ACCBU	002C				ACCB<	39>							ACC	BU				XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0030Program Counter High Byte Register	PCL	002E							Program	Counter Lov	v Word Regi	ster							XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
00320Table Page Address Pointer Register00340-0 <td< td=""><td>РСН</td><td>0030</td><td>Ι</td><td>Ι</td><td> </td><td> </td><td>Ι</td><td>Ι</td><td> </td><td>Ι</td><td></td><td></td><td>Program</td><td>1 Counter F</td><td>ligh Byte R€</td><td>egister</td><td></td><td></td><td>0000</td></td<>	РСН	0030	Ι	Ι			Ι	Ι		Ι			Program	1 Counter F	ligh Byte R€	egister			0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0034 - - - - Program Memory Visibility Page Address Pointer Register 0036 - <td>TBLPAG</td> <td>0032</td> <td>Ι</td> <td>Ι</td> <td> </td> <td> </td> <td>Ι</td> <td>Ι</td> <td> </td> <td>Ι</td> <td></td> <td></td> <td>Table Pa</td> <td>age Addres:</td> <td>s Pointer Rt</td> <td>egister</td> <td></td> <td></td> <td>0000</td>	TBLPAG	0032	Ι	Ι			Ι	Ι		Ι			Table Pa	age Addres:	s Pointer Rt	egister			0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0036 Pertonal Counter Register 11 0038 Pertonal Counter Register Repeat Lop Counter Register Repeat Register	PSVPAG	0034	Ι	Ι						Ι		Progra	am Memory /	Visibility Pa	ge Address	Pointer Rec	gister		0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
1038 DCOUNT DCOUNT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	RCOUNT	0036							Repe	at Loop Coui	nter Register								XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
	DCOUNT	0038								DCOUNT<	15:0>								XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Image:	DOSTARTL	003A							DOST	ARTL<15:1	^							0	XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
003E DORNDE<15:1- 0040 <	DOSTARTH	003C	Ι	Ι			Ι			Ι		1			DOSTAR	TH<5:0>			00xx																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0040 - - - - - - - - - - - - - - - - DORDH 0042 0042 004 00 SAB DA DC PL1 PL0 RA N OV Z C C 1 0044 - - U DL DL DL PL1 PL0 RA N OV Z C C 1 0044 - - U DL DL DL DL PL PL <td< td=""><td>DOENDL</td><td>003E</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DOE</td><td>NDL<15:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>XXXX</td></td<>	DOENDL	003E							DOE	NDL<15:1>								0	XXXX																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
0042 0A 0B SA SB OAB SAB DA DC PL1 IPL0 RA N OV Z C 1 0044 US EDT L- US EDT 24.2:0- SATA SATB SATB ACCSAT PSV RND IF	DOENDH	0040	Ι	I	Ι	Ι		Ι		I	I	I			DOE	HDH			00xx																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
I 0044 - - US EDT DL<2:0> SATB SATDW ACCSAT IPL3 PSV RND IF v 0046 XMODEN - - - US BWM<3:0> YWM<3:0> YWM<3:0> XWM<3:0> XWM<	SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1		RA	z	S	Z	ပ	0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
v 0046 XMODEN YMODEN BWM<3:0> YWM<3:0> XWM<3:0>	CORCON	0044	Ι	I		SN	EDT		DL<2:0>		SATA	SATB	DW	ACCSAT	IPL3	PSV	RND	ш	0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
	MODCON	0046	XMODEN	YMODEN				BWM	<3:0>			≻WM<	:3:0>			×WM<	<3:0>		0000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																

	All Resets	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	02	All Resets	0000	0000	0000	0000		04	All Resets	0000	0000	0000	0000	
	Bit 0 R	0	Ч	0	Ч			.℃. Reset values are shown in hexadecimal. ER MAP FOR dsPIC33FJ128MC202/802, dsPIC33FJ64MC202/802 AND dsPIC33FJ32MC302	Bit 0	CNOIE	CN16IE	CNOPUE	CN16PUE		ER MAP FOR dsPIC33FJ128MC204/804, dsPIC33FJ64MC204/804 AND dsPIC33FJ32MC304	Bit 0	CN0IE	CN16IE	CN0PUE	CN16PUE	
	Bit 1							PIC33F.	Bit 1	CN1IE	Ι	CN1PUE			sPIC33F.	Bit 1	CN1IE	CN17IE	CN1PUE		
	Bit 2							AND ds	Bit 2	CN2IE	Ι	CN2PUE	I		AND ds	Bit 2	CN2IE	CN18IE	CN2PUE	CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE	
	Bit 3							202/802	Bit 3	CN3IE	Ι	CN3PUE	Ι		204/804	Bit 3	CN3IE	CN19IE	CN3PUE	CN19PUE	
	Bit 4							FJ64MC	Bit 4	CN4IE	I	CN4PUE			FJ64MC	Bit 4	CN4IE	CN20IE	CN4PUE	CN20PUE	
	Bit 5						Register	IsPIC33	Bit 5	CN5IE	CN21IE	CN5PUE	CN21PUE		IsPIC33	Bit 5	CN5IE	CN21IE	CN5PUE	CN21PUE	
	Bit 6	-				^	Disable Interrupts Counter Register	12/802, d	Bit 6	CN6IE	CN22IE	CN6PUE	CN22PUE)4/804, d	Bit 6	CN6IE	CN22IE	CN6PUE	CN22PUE	
	Bit 7					XB<14:0>	able Interrup	simal. 28MC20	Bit 7	CN7IE	CN23IE	CN7PUE	CN23PUE	imal.	28MC20	Bit 7	CN7IE	CN23IE	CN7PUE	CN23PUE	imal.
	Bit 8	XS<15:1>	XE<15:1>	YS<15:1>	YE<15:1>		Dis	in hexaded	Bit 8	I	CN24IE	Ι	CN24PUE	in hexadec	C33FJ1	Bit 8	CN8IE	CN24IE	CN8PUE	CN24PUE	in hexadec
	IO Bit 9							s are showr DR dsPI	Bit 9	I	Ι	Ι		s are shown	OR dsPI	Bit 9	CN9IE	CN25IE	CN9PUE	CN25PUE	s are shown
DNTINUED	Bit 11 Bit 10	-						'0'. Reset values are shown in hexadecimal ER MAP FOR dsPIC33FJ128N	Bit 10	1	I	I	I	'0'. Reset values are shown in hexadecimal.	MAP F	Bit 10	CN10IE	CN26IE	CN10PUE	CN26PUE	'0'. Reset values are shown in hexadecimal.
	Bit 12 Bit								Bit 11	CN11IE	CN27IE	CN11PUE	CN27PUE			Bit 11	CN11IE	CN27IE	CN11PUE	CN27PUE	read as '0'.
CPU CORE REGISTERS MAP (C	Bit 13 Bi							 x = unknown value on Reset, — = unimplemented, read as CHANGE NOTIFICATION REGIST 	Bit 12	CN12IE	I	CN12PUE		= unknown value on Reset, — = unimplemented, read as	CHANGE NOTIFICATION REGISI	Bit 12	CN12IE	CN28IE	CN12PUE	CN28PUE	× = unknown value on Reset, — = unimplemented, read as
REGISTI	Bit 14 E						I	et, — = unir DTIFICA'	Bit 13	CN13IE	CN29IE	CN13PUE	CN29PUE	et, — = unin		Bit 13	CN13IE	CN29IE	CN13PUE	CN29PUE	et, — = unin
CORE	Bit 15					BREN		alue on Res	Bit 14	CN14IE	CN30IE	CN15PUE CN14PUE	CN30PUE	alue on Res	NGE NC	Bit 14	CN14IE	CN30IE	CN14PUE	CN30PUE	alue on Res
CPU	SFR Addr Bi	0048	004A	004C	004E	0050 BF	0052	= unknown v	Bit 15	CN15IE	I	CN15PUE		: unknown v	CHA	Bit 15	CN15IE	I	CN15PUE	1	v unknown v
≣ 3-1:								: ×=	SFR Addr	0900	00C2	0068	006A	×	= 3-3:	SFR Addr	0900	00C2	0068	006A	
TABLE	SFR Name	XMODSRT	XMODEND	YMODSRT	YMODEND	XBREV	DISICNT	Legend: ×: TABLE 3-2:	SFR Name	CNEN1	CNEN2	CNPU1	CNPU2	Legend:	TABLE 3-3:	SFR Name	CNEN1	CNEN2	CNPU1	CNPU2	Legend:

TABLE	3-4:	INTER	INTERRUPT CONTROLLER REG	ONTRO	LLER RI		STER MAP		·									
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	1	0000
INTCON2	0082	ALTIVT	DISI		Ι	Ι	I	I	I	I	Ι	I	Ι	Ι	INT2EP	INT1EP	INTOEP	0000
IFS0	0084	Ι	DMA1IF	AD1IF	U1TXIF	U1RXIF	SP111F	SP11EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF I	DMA2IF	IC8IF	IC7IF	I	INT11F	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	Ι	DMA4IF	PMPIF						I		1	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF	0000
IFS3	008A	FLTA1IF	RTCIF	DMA5IF	Ι	Ι	QE11F	PWM1IF	I	Ι	Ι	I	Ι	Ι	Ι	I	1	0000
IFS4	008C	DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾		Ι	QEI2IF	FLTA2IF	PWM2IF		Ι	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF		0000
IEC0	0094	Ι	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SP11EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	9600	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE I	DMA2IE	IC8IE	IC7IE	I	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	8600	Ι	DMA4IE	BIAMA	Ι	Ι		I		Ι	Ι	I	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE	0000
IEC3	A000	FLTA1IE	RTCIE	DMA5IE	Ι	Ι	QEI1IE	PWM1IE		Ι	I	I	I	Ι	Ι	1	1	0000
IEC4	009C	DAC1LIE ⁽²⁾	DAC1RIE ⁽²⁾		Ι	QEI2IE	FLTA2IE	PWM2IE		I	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	UZEIE	U1EIE	1	0000
IPC0	00A4	I	L	T1IP<2:0>			0	OC1IP<2:0>		I		IC1IP<2:0>		I	N	INT0IP<2:0>		444
IPC1	00A6	Ι		T2IP<2:0>		Ι	0	OC2IP<2:0>		I		IC2IP<2:0>		Ι	DN	DMA0IP<2:0>		444
IPC2	00A8	I	U1	U1RXIP<2:0>	•	I	S	SPI11P<2:0>		I		SPI1EIP<2:0>	^	Ι	F	T3IP<2:0>		444
IPC3	00AA	I	I	I	I	I	ā	DMA1IP<2:0>	^	I		AD11P<2:0>		Ι	U1	U1TXIP<2:0>	_	0444
IPC4	00AC	Ι	C	CNIP<2:0>		Ι		CMIP<2:0>		I	4	MI2C1IP<2:0>	^	Ι	SIS	SI2C1IP<2:0>		444
IPC5	00AE	Ι)	IC8IP<2:0>		Ι		IC7IP<2:0>		Ι	Ι	Ι	Ι	Ι	N	INT1IP<2:0>		4404
IPC6	00B0	Ι		T4IP<2:0>		Ι	С	0C4IP<2:0>		I		OC3IP<2:0>		Ι	DN	DMA2IP<2:0>		4444
IPC7	00B2	Ι	ZN	U2TXIP<2:0>		Ι	Ü	U2RXIP<2:0>	,	I		INT2IP<2:0>		I	T	T5IP<2:0>		444
IPC8	00B4	Ι	Ċ	C1IP<2:0> ⁽¹⁾		Ι	C1.	C1RXIP<2:0> ⁽¹⁾	(1)	Ι		SP12IP<2:0>		Ι	SP	SPI2EIP<2:0>		4444
IPC9	00B6	Ι	Ι		Ι	Ι	I	I	I	I	Ι	I	Ι	Ι	DN	DMA3IP<2:0>		0004
IPC11	00BA	Ι	Ι	Ι	Ι	Ι	D	DMA4IP<2:0>	۸	I		PMPIP<2:0>		Ι	Ι	Ι	Ι	0440
IPC14	00C0				I		σ	QE111P<2:0>			F	PWM1IP<2:0>	^	Ι	I			0440
IPC15	00C2	I	EL.	FLTA1IP<2:0>	^		ч	RTCIP<2:0>		I]	DMA5IP<2:0>	^		I			4440
IPC16	00C4	Ι	C	CRCIP<2:0>		Ι	ſ	U2EIP<2:0>		I		U1EIP<2:0>		Ι	Ι	Ι	Ι	4440
IPC17	00C6	Ι	Ι		Ι	Ι	C1	C1TXIP<2:0> ⁽¹⁾	(1)	I		DMA7IP<2:0>		Ι	DN	DMA6IP<2:0>		0444
IPC18	00C8	Ι	Ø	QEI2IP<2:0>		Ι	FL	FLTA2IP<2:0>	٨	I	F	PWM2IP<2:0>	^		Ι			4440
IPC19	00CA	Ι	DAC	DAC1LIP<2:0> ⁽²⁾	.(2)	Ι	DAC	DAC1RIP<2:0> ⁽²⁾	,(2)	I		Ι		Ι	Ι	Ι	Ι	4400
INTTREG	00E0	Ι	Ι		Ι		ILR<3:0>>	0>>		I			VEC	VECNUM<6:0>				4444
Legend:	n = ×	inknown valu	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	– = unimpl∈	smented, res	ad as '0'. Res	et values ;	are shown ii	n hexadec	imal.								
Note 1:		rupts disablec	Interrupts disabled on devices without ECAN TM modules.	vithout EC/	AN™ modul€	BS.												
ä		rupts disablec	d on devices v	vithout DA	Ċ													

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

DS70291B-page 40

	All Resets	XXXX	FFFF	0000	XXXX	XXXX	XXXX	FFF	FFF	0000	0000	XXXX	XXXX	XXXX	FFF	FFF	0000	0000			All Resets	XXXX	0000	XXXX	0000	XXXX	0000	XXXX	0000
	Bit 0			Ι						Ι	Ι						I	I			Bit 0								
	Bit 1			TCS						TCS	TCS						TCS	TCS			Bit 1		ICM<2:0>		ICM<2:0>		ICM<2:0>		ICM<2:0>
	Bit 2			TSYNC						I	I						I	I			Bit 2								
	Bit 3			Ι						T32	I						T32	I			Bit 3		ICBNE		ICBNE		ICBNE		ICBNE
	Bit 4			<1:0>						<1:0>	<1:0>						<1:0>	<1:0>			Bit 4		ICOV		ICOV		ICOV		ICOV
	Bit 5			TCKPS<1:0>		ly)				TCKPS<1:0>	TCKPS<1:0>		ly)				TCKPS<1:0>	TCKPS<1:0>			Bit 5		A		A		A		A
	Bit 6			TGATE		Timer3 Holding Register (for 32-bit timer operations only)				TGATE	TGATE		Timer5 Holding Register (for 32-bit timer operations only)				TGATE	TGATE			Bit 6		ICI<1:0>		ICI<1:0>		ICI<1:0>		ICI<1:0>
	Bit 7	kegister	egister 1	I	kegister	32-bit timer c	tegister	egister 2	egister 3	I	I	kegister	32-bit timer c	kegister	egister 4	egister 5	I	I	nal.		Bit 7	rre Register	ICTMR	rre Register	ICTMR	rre Register	ICTMR	Ire Register	ICTMR
	Bit 8	Timer1 Register	Period Register 1	1	Timer2 Register	Register (for	Timer3 Register	Period Register 2	Period Register 3	1	1	Timer4 Register	Register (for	Timer5 Register	Period Register 4	Period Register 5	1	1	in hexadecir		Bit 8	Input 1 Capture Register	1	Input 2 Capture Register		Input 7 Capture Register		Input 8Capture Register	1
	Bit 9			1		er3 Holding F				1	1		er5 Holding F					1	are shown		Bit 9		1						1
	Bit 10			I		Time				I	I		Time				ļ	I	= unimplemented, read as '0'. Reset values are shown in hexadecimal.		Bit 10								
	Bit 11			I						I	I						I	I	ad as '0'. R	MAP	Bit 11		1						1
٩	Bit 12			I						I	I							I	emented, re	INPUT CAPTURE REGISTER MA	Bit 12								1
TIMER REGISTER MAP	Bit 13			TSIDL						TSIDL	TSIDL						TSIDL	TSIDL	— = unimple	RE REG	Bit 13		ICSIDL		ICSIDL		ICSIDL		ICSIDL
REGIS.	Bit 14			I						I	I						I	I	on Reset,	CAPTU	Bit 14		I		1		1		I
TIMER	Bit 15			TON						TON	TON						TON	TON	x = unknown value on Reset,	INPUT	Bit 15		Ι						I
3-5:	SFR Addr	0100	0102	0104	0106	0108	010A	010C	010E	0110	0112	0114	0116	0118	011A	011C	011E	0120	un = ×	3-6:	SFR Addr	0140	0142	0144	0146	0158	015A	015C	015E
TABLE 3-5:	SFR Name	TMR1	PR1	T1CON	TMR2	TMR3HLD	TMR3	PR2	PR3	T2CON	T3CON	TMR4	TMR5HLD	TMR5	PR4	PR5	T4CON	T5CON	Legend:	TABLE 3-6:	SFR Name	IC1BUF	IC1CON	IC2BUF	IC2CON	IC7BUF	IC7CON	IC8BUF	IC8CON

$dsPIC33FJ32MC302/304,\, dsPIC33FJ64MCX02/X04,\, AND\, dsPIC33FJ128MCX02/X04$

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Legend:

P1DC3 01DA Legend: u = uninitialized bit, --= unimplemented, read as '0'

FF00 0000 0000

DTS1I FAEN0 POUT1L

> FAEN1 POUT1H

DTS2I FAEN2 POUT2L

POUT2H

POUT3L

POUT3H

PWM Duty Cycle #3 Register

PWM Duty Cycle #1 Register PWM Duty Cycle #2 Register

– FAOV1L POVD1L

– FAOV1H POVD1H

> FAOV2L POVD2L

> FAOV2H POVD2H

> FAOV3L POVD3L

FAOV3H POVD3H

I

I

I

1 1

01CE

P1DTCON2

01D0 01D4

P1FLTACON P1OVDCON 01D6 01D8

P1DC1 P1DC2

1 1

--FLTAM 0000

00000

DTS1A

DTS2A —

DTS3I

DTS3A

:		;				-												
SFK Name	Addr.	BIT 15	Bit 14	BIT 13	Bit 12	Bit 11	Bit 10) Bit 9	BIT 8	Bit /	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	BIT 0	Reset State
P2TCON	05C0	PTEN	Ι	PTSIDL	I	1	1		1		PTOPS<3:0>	<3:0>		PTCKPS<1:0>	S<1:0>	PTMO	PTMOD<1:0>	0000
P2TMR	05C2	PTDIR							PWM Time	PWM Timer Count Value Register	ue Register							0000
P2TPER	05C4	I							PWM Tim	PWM Time Base Period Register	od Register							0000
P2SECMP	05C6	SEVTDIR							PWM Special Event Compare Register	I Event Com	pare Registe	эг						0000
PWM2CON1	05C8	I	I	I	I			1	PMOD1	I	I	I	PEN1H	I	I	I	PEN1L	00FF
PWM2CON2	05CA	1	Ι	I			SEV	SEVOPS<3:0>		I	1	1	1	1	IUE	OSYNC	NDIS	0000
P2DTCON1	05CC	DTBPS<1:0>	<1:0>			DT	DTB<5:0>			DTAP	DTAPS<1:0>			DTA	DTA<5:0>			0000
P2DTCON2	05CE	I	Ι	I	I	I	1	1	1	I	I	1	1	I	I	DTS1A	DTS11	0000
P2FLTACON	05D0	Ι	Ι	I	I	I	1	FAOV1H	H FAOV1L	. FLTAM	I	1	1	1	Ι	I	FAEN1	0000
P20VDC0N	05D4	1	Ι	I	I		1	POVD1H	IH POVD1L	1	I	1	1	1	I	POUT1H	POUT1L	FFOO
P2DC1	05D6							e.	PWM Duty Cycle #1 Register	cle #1 Regis	ter							0000
Legend: u =	= uninitiali	u = uninitialized bit, — = unimplemented, read as '0'	: unimplem	ented, read	as '0'													
TABLE 2.40.			CICTED															
בר בר בר							·	·										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10 B	Bit 9 Bit 8	8 Bit 7	Bit 6	Bit 5	Bit 4		Bit 3 I	Bit 2	Bit 1	Bit 0	Reset State
QE11CON	01E0	CNTERR	I	QEISIDL	NDX	UPDN	QEII	QEIM<2:0>	SWPAB	BCDOUT	L TQGATE		TQCKPS<1:0>		POSRES T	Tacs UF	UPDN_SRC	0000
DFLT1CON	01E2	Ι		1			IMV<1:0>	0> CEID	D QEOUT		QECK<2:0>	_0					I	0000
POS1CNT	01E4								Position Co	Position Counter<15:0>								0000
MAX1CNT	01E6								Maximum C	Maximum Count<15:0>								FFF
Legend: u =	= uninitial	\mathbf{u} = uninitialized bit, — = unimplemented, read as 'o'	= unimplem	ented, read	as '0'													
TABLE 2.44.																		

QEI2 REGISTER MAP TABLE 3-11:

SFR Name	Addr.	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 3 Bit 7	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
QEI2CON		01F0 CNTERR	Ι	QEISIDL INDX UPDN	NDX	UPDN	ğ	QEIM<2:0>		SWPAB	PCDOUT	SWPAB PCDOUT TQGATE TQCKPS<1:0>	TQCKP	S<1:0>	POSRES	TACS	POSRES TQCS UPDN_SRC	0000
DFLT2CON 01F2	01F2		—				·>/MI	1:0>	CEID	IMV<1:0> CEID QEOUT		QECK<2:0>		I	Ι		I	0000
POS2CNT 01F4	01F4								Po	Position Counter<15:0>	ter<15:0>							0000
MAX2CNT 01F6	01F6								Ma	Maximum Count<15:0>	int<15:0>							FFF
Leaend: $u = uninitialized bit - = unimplemented read as '0'$	= uninitia	lized bit. — =	= unimplem	ented read	'0, se													

© 2008 Microchip Technology Inc.

TABLE 3-12 :	-12:	12C REGISTER MAP	ISTER	MAP														
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	I		ļ	I		I	I	I				Receive Register	Register				0000
I2C1TRN	0202	I		I	I	I	I	Ι					Transmit Register	Register				OOFF
I2C1BRG	0204	I		I	Ι	I	I	Ι				Baud Rati	Baud Rate Generator Register	. Register				0000
I2C1CON	0206	IZCEN		12CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	I	I	I	BCL	GCSTAT	ADD10	IWCOL	I2COV	P_A	Ч	S	R_W	RBF	TBF	0000
I2C1ADD	020A	I	I	1	I	I	I					Address Register	Register					0000
I2C1MSK	020C	I	I	1	I	I	I					Address Mask Register	sk Register					0000
Legend:	× = unk.	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	n Reset, —	- = unimplen	nented, rea	d as '0'. Res	set values a	are shown i	n hexadecii	mal.								
TABLE 3-13 :	-13:	UART1 REGISTER MAP	REGIST	ER MAF	•													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	1	NSIDL	IREN	RTSMD	I	UEN1	NENO	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL<1:0>	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	Ι	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	-		Ι					UTX8			'n	UART Transmit Register	nit Register				XXXX
U1RXREG	0226	Ι		Ι					URX8			1U≉	UART Received Register	ed Register				0000
U1BRG	0228							Baud	Rate Gene.	Baud Rate Generator Prescaler	ler							0000
Legend:	x = unk	imes = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	n Reset, —	- = unimplen	nented, rea	d as '0'. Res	set values a	are shown i	n hexadeci	mal.								
TABLE 3-14 :	-14:	UART2 REGISTER MAP	REGIST	ER MAF	•													

SFR

SFR Name SFR Bit	SFR Addr	Bit 15	Bit 14	Bit 15 Bit 14 Bit 13	Bit 12	Bit 11	Bit 11 Bit 10	Bit 9 Bit 8	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	0230 UARTEN	Ι	USIDL IREN	IREN	RTSMD	1	UEN1	UEN1 UEN0	WAKE	WAKE LPBACK ABAUD URXINV	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL	0000
U2STA	0232	0232 UTXISEL1 UTXINV UTXISEL0	UTXINV	UTXISEL0		UTXBRK UTXEN	UTXEN	UTXBF TRMT	TRMT	URXISE	URXISEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	NRXDA	0110
U2TXREG	0234		Ι	Ι	I	-	I	—	UTX8			'n	UART Transmit Register	it Register				XXXX
U2RXREG	0236		Ι	Ι	I	-	I	—	URX8			'n	UART Receive Register	s Register				0000
U2BRG	0238							Bau	d Rate Ger	Baud Rate Generator Prescaler	aler							0000
Legend:	x = unkn	own value or	ר Reset, –	Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	ented, reac	d as '0'. Res	set values a	are shown	in hexaded	simal.								

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

TABLE 3-15:		SPI1 RE	SPI1 REGISTER MAP	MAP														
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	3 Bit 12	Elit 11	1 Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	Ι	SPISIDL)L —		1		1	Ι	SPIROV	Ι	Ι	Ι	-	SPITBF	SPIRBF	0000
SPI1CON1	0242		Ι		DISSCK	K DISSDO	0 MODE16	I6 SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		BPRE	PPRE<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL)L —				Ι	Ι	Ι	Ι	Ι	-	-	FRMDLY		0000
SPI1BUF	0248							SPI1 TI	SPI1 Transmit and Receive Buffer Register	Receive Buffe	r Register							0000
Legend:	x = unknc	wn value o	imes = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.	= unimple	mented, reś	ad as '0'. F	eset values	are showr	n in hexadec	imal.								
TABLE 3-16 :		SPI2 RE	SPI2 REGISTER MAP	MAP														
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	3 Bit 12	2 Bit 11	1 Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	1	SPISIDL	ا ۲				I	1	SPIROV	1	I	1	I	SPITBF	SPIRBF	0000
SPI2CON1	0262		Ι		DISSCK	N DISSDO	0 MODE16	I6 SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	PPRE<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL)L —					Ι		Ι	Ι	-	-	FRMDLY		0000
SPI2BUF	0268							SPI2 Tr	SPI2 Transmit and Receive Buffer Register	Receive Buffe	r Register							0000
Legend:	x = unknc	wn value o	imes = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	= unimple	mented, reś	ad as '0'. F	eset values	are showr	n in hexadec	imal.								
TABLE 3-17 :		ADC1 R	ADC1 REGISTER MAP FOR dsP	R MAP	FOR d		FJ64MC	202/80	C33FJ64MC202/802, dsPIC33FJ128MC202/802 AND dsPIC33FJ32MC302	33FJ12	3MC202	/802 AN	D dsPl(C33FJ32	MC302	•		
File Name	Addr	Bit 15	Bit 14 E	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ADC Data Buffer 0								хххх
AD1CON1	0320	ADON	- A	ADSIDL A	ADDMABM	Ι	AD12B	FORN	FORM<1:0>		SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	>	VCFG<2:0>				CSCNA	CHP(CHPS<1:0>	BUFS	Ι		SMPI<3:0>	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC		1		U)	SAMC<4:0>						ADCS<7:0>	<7:0>				0000
AD1CHS123	0326					Ι	CH123NB<1:0>	B<1:0>	CH123SB	Ι	Ι	Ι	Ι	-	CH123N	CH123NA<1:0>	CH123SA	0000
AD1CHS0	0328	CHONB				C	CH0SB<4:0>			CHONA	Ι	Ι		С	CH0SA<4:0>	۸		0000
AD1PCFGL	032C					Ι	Ι		I	Ι	Ι	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330					Ι	Ι			Ι		CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332					Ι	Ι			Ι	Ι	Ι		—		DMABL<2:0>	<	0000
Legend:	x = unkno	own value c	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.	= unimple	mented, re	ad as '0'. F	teset values	are show	n in hexadec	imal.								

© 2008 Microchip Technology Inc.

DS70291B-page 45

TABLE 3-18: ADC1 REGISTER MAP FOR ds	18: ,	ADC1 F	SIB3	TER M/	AP FOR d	sPIC33	FJ64MC	:204/80	PIC33FJ64MC204/804, dsPIC33FJ128MC204/804 AND dsPIC33FJ32MC304	33FJ12	8MC204	/804 A	ND dsPI	C33FJ32	2MC304	_		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ADC Data Buffer 0								XXXX
AD1CON1	0320	ADON	Ι	ADSIDL	ADSIDL ADDMABM	-	AD12B	FORN	FORM<1:0>		SSRC<2:0>		-	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	>	VCFG<2:0>	^	Ι	-	CSCNA	CHP	CHPS<1:0>	BUFS	-		SMPI<3:0>	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	Ι	Ι		S	SAMC<4:0>						ADCS<7:0>	<7:0>				0000
AD1CHS123	0326	Ι	Ι	Ι	Ι	-	CH123N	B<1:0>	CH123NB<1:0> CH123SB	Ι	-		-	Ι	CH123N	A<1:0>	CH123NA<1:0> CH123SA	0000
AD1CHS0	0328	CHONB	Ι	Ι		Ö	CH0SB<4:0>			CHONA	-			Ċ	CH0SA<4:0>			0000
AD1PCFGL	032C	Ι	Ι	Ι	Ι	-	-		PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2 PCFG1	PCFG1	PCFG0	0000
AD1CSSL	0330	Ι	Ι	Ι	Ι	-	-		CSS8	CSS7	0SSO	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332															DMABL<2:0>	^	0000
Legend:	× = unkn	own value	on Reset	t, — = unim	\mathbf{x} = unknown value on Reset, — = unimplemented, read	ad as '0'. F	Reset values	s are show	as '0'. Reset values are shown in hexadecimal.	cimal.								

DAC1 REGISTER MAP FOR dsPIC33FJ128MC804 AND dsPIC33FJ64MC804 **TABLE 3-19:**

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DAC1CON 03F0 DACEN	03F0	DACEN	Ι	DACSIDL AMPON	AMPON	1	I	Ι	FORM	Ι			D/	DACFDIV<6:0>	6			0000
DAC1STAT 03F2 LOEN	03F2	LOEN	Ι	LMVOEN		I	LITYPE	LFULL	LITYPE LFULL LEMPTY ROEN	ROEN	I	- RMVOEN	Ι		RITYPE	RFULL	RITYPE RFULL REMPTY	0000
DAC1DFLT 03F4	03F4								DAC1DF	DAC1DFLT<15:0>								0000
DAC1RDAT 03F6	03F6								DAC1RE	DAC1RDAT<15:0>								0000
DAC1LDAT 03F8	03F8								DAC1LD	DAC1LDAT<15:0>								0000
l anand.		2 enley awe	n Bacat	v = unknown value on Beset = unimulamented read as '0.' Beset values are shown in hevaderimal	Jontod rog	d (∪, se p	sent values	are chown	in hevedaci	lem								

adecimal. 0 ŝ B 5 UNKNOWN × Legend:

TABLE 3-20:	-20:	DMA F	EGIST	DMA REGISTER MAP	٩	ľ	ĺ	F	ľ		Ī			Ī			-	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	I	1		I	I	AMODE<1:0>	<1:0>	I	I	MODE<1:0>	<1:0>	0000
DMA0REQ	0382	FORCE	Ι		Ι	Ι		Ι		Ι			Ч	IRQSEL<6:0>				0000
DMA0STA	0384								Ś	STA<15:0>								0000
DMA0STB	0386								S.	STB<15:0>								0000
DMA0PAD	0388								Ρ	PAD<15:0>								0000
DMA0CNT	038A	I	I	1	I	Ι	I					CNT<9:0>	:9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	I	I		I	I	AMODE<1:0>	<1:0>	I	I	MODE<1:0>	<1:0>	0000
DMA1REQ	038E	FORCE			I	1	I	I		I			Ľ	RQSEL<6:0>				0000
DMA1STA	0390								Ś	STA<15:0>								0000
DMA1STB	0392								S.	STB<15:0>								0000
DMA1PAD	0394								Ρ	PAD<15:0>								0000
DMA1CNT	0396	I	I		I	Ι	I					CNT<9:0>	<0:6;					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW		Ι		Ι		AMODE<1:0>	<1:0>	Ι	Ι	<0:1>DDE<1:0>	<1:0>	0000
DMA2REQ	039A	FORCE	Ι	I	Ι	Ι		Ι					Ч	IRQSEL<6:0>				0000
DMA2STA	039C								S	STA<15:0>								0000
DMA2STB	039E								ŝ	STB<15:0>								0000
DMA2PAD	03A0								Ρ	PAD<15:0>								0000
DMA2CNT	03A2	I	I		I	Ι	I					CNT<9:0>	<0:6;					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW		Ι		-	Ι	AMODE<1:0>	<1:0>	Ι	Ι	<0:1>DDE<1:0>	<1:0>	0000
DMA3REQ	03A6	FORCE	Ι		Ι	Ι		Ι					Ч	IRQSEL<6:0>				0000
DMA3STA	03A8								S	STA<15:0>								0000
DMA3STB	03AA								ŝ	STB<15:0>								0000
DMA3PAD	03AC								Ρ	PAD<15:0>								0000
DMA3CNT	03AE	Ι	I		Ι	Ι	Ι					CNT<9:0>	<0:6;					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW		Ι		Ι		AMODE<1:0>	<1:0>	Ι	Ι	<0:1>DDE<1:0>	<1:0>	0000
DMA4REQ	03B2	FORCE	Ι		I	Ι		Ι	I	I			ΙF	IRQSEL<6:0>				0000
DMA4STA	03B4								Š	STA<15:0>								0000
DMA4STB	03B6								S	STB<15:0>								0000
DMA4PAD	03B8								Ρ¢	PAD<15:0>								0000
DMA4CNT	03BA	I	Ι			Ι						CNT<9:0>	:9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	I	Ι		I	I	AMODE<1:0>	<1:0>	I	I	MODE<1:0>	<1:0>	0000
DMA5REQ	03BE	FORCE	Ι		I	Ι	I	I		I			R	IRQSEL<6:0>				0000
DMA5STA	03C0								Ω.	STA<15:0>								0000
DMA5STB	03C2								Ś	STB<15:0>								0000
Legend:	un =	implement∈	d, read as	, '0'. Reset	= unimplemented, read as '0'. Reset values are shown in		hexadecimal.											

© 2008 Microchip Technology Inc.

TABLE 3-20:		DMA REGISTER MAP (CONTINUED)	TER MA	P (CON	TINUED	_									-	-	[
Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
03C4	4							P	PAD<15:0>								0000
C)	03C6 —	I	Ι	Ι	I						CNT	CNT<9:0>					0000
	03C8 CHEN	I SIZE	DIR	HALF	NULLW	-	I	I	Ι		AMODE<1:0>	E<1:0>	-	Ι	MODE<1:0>	:1:0>	0000
	03CA FORCE	I W	Ι	Ι	Ι	Ι	I	Ι	Ι			H	RQSEL<6:0>				0000
- ×	03CC							S	STA<15:0>								0000
i č	03CE							S.	STB<15:0>								0000
ы	03D0							Ρ	PAD<15:0>								0000
3	03D2 —	I	Ι	Ι	I						CNT	CNT<9:0>					0000
ы Ш	03D4 CHEN	I SIZE	DIR	HALF	NULLW	I	I	I	I	I	AMODE<1:0>	E<1:0>	l	I	MODE<1:0>	:1:0>	0000
33	03D6 FORCE	I W	I	1	I	I	I	I	I			-	RQSEL<6:0>				0000
33	03D8							S	STA<15:0>								0000
03DA	AC							S.	STB<15:0>								0000
03DC	C							Ы	PAD<15:0>								0000
031	03DE —	Ι	Ι	-	Ι	-					CNT	CNT<9:0>					0000
33,	03E0 PWCOL	PWCOL7 PWCOL6 PWCOL5	PWCOL5	PWCOL4	PWCOL3	PWCOL2 PWCOL1 PWCOL0	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL5 XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
33	03E2 —	I	Ι	Ι		LSTCH<3:0>	<3:0>		PPST7	PPST6	PPST5	PPST4	51Sdd	PPST2	PPST1	PPST0	0000
ι (C)	03E4							DS/	DSADR<15:0>								0000
		snted, read a	is '0'. Reset	values are		hexadecimal.											

0

)															
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	I	Ι	CSIDL	ABAT	CANCK	~	REQOP<2:0>	6	Ō	OPMODE<2:0>	6	I	CANCAP	1	I	MIM	0480
C1CTRL2	0402	Ι	1	I	I			I		Ι					DNCNT<4:0>	Δ		0000
C1VEC	0404						FILHIT<4:0>	4		Ι				ICODE<6:0>	4			0000
C1FCTRL	0406		DMABS<2:0>	<0:	Ι	Ι		Ι	Ι	Ι	Ι				FSA<4:0>			0000
C1FIFO	0408	Ι				FBI	FBP<5:0>			Ι				FNRE	FNRB<5:0>			0000
C1INTF	040A	Ι		TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	Ι	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	Ι			Ι			Ι		IVRIE	WAKIE	ERRIE	Ι	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRC	TERRCNT<7:0>							RERRCNT<7:0>	IT<7:0>				0000
C1CFG1	0410	1							I	MLS	SJW<1:0>			BRP	BRP<5:0>			0000
C1CFG2	0412	Ι	WAKFIL		Ι			SEG2PH<2:0>	~0	SEG2PHTS	S SAM		SEG1PH<2:0>	<0:	ш	PRSEG<2:0>	^	0000
C1FEN1	0414	FLTEN15	FLTEN14	4 FLTEN13	3 FLTEN12	2 FLTEN11	1 FLTEN10	0 FLTEN9	FLTEN8	FLTEN7	FLTEN6	9 FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTENO	FFF
C1FMSKSEL1	0418	F7MS	F7MSK<1:0>	F6M:	F6MSK<1:0>	F5N	F5MSK<1:0>	F4MS	F4MSK<1:0>	F3MS	F3MSK<1:0>	F2M5	F2MSK<1:0>	F1MS	F1MSK<1:0>	FOMSK<1:0>	<1:0>	0000
C1FMSKSEL2	041A		F15MSK<1:0>	F14N	F14MSK<1:0>	F13	F13MSK<1:0>	F12M	F12MSK<1:0>	F11MS	F11MSK<1:0>	F10M:	F10MSK<1:0>	F9MS	F9MSK<1:0>	F8MSK<1:0>	<1:0>	0000
- Fegend:	— = unim	plemented,	, read as '0	n'. Reset val	= unimplemented, read as '0'. Reset values are shown in hexadecimal.	wn in hexa	tdecimal.											
TABLE 3-22 :		ECAN1	REGISI	LER MA	ECAN1 REGISTER MAP WHEN C	N C1CT	1CTRL1.WIN = 0		OR dsP	(FOR dsPIC33FJ128MC802/804 AND dsPIC33FJ64MC802/804)	28MC8(2/804 4	AND dsf	PIC33FJ	64MC8	02/804)		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
	0400- 041E							See	definition	See definition when WIN = x	×							
C1RXFUL1	0420 R	RXFUL15 F	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422 R	RXFUL31 F	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23 F	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428 R	RXOVF15 F	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A R	RXOVF31 F	3XOVF30	RXOVF30 RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25 RXOVF24	RXOVF24	RXOVF23 F	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI<1:0>	<1:0>	TXEN0	TXABT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI<1:0>	1<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI<1:0>	<1:0>	TXEN2	TXABT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PR	TX2PRI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI<1:0>	<1:0>	TXEN4	TXABT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PR	TX4PRI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI<1:0>	<1:0>	TXEN6	TXABT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI<1:0>	1<1:0>	0000
C1RXD	0440								Received Data Word	Data Word								XXXX
C1TXD	0442								Transmit Data Word	tata Word							_	XXXX
Cegend:	c = unkno	x = unknown value on Reset, —	n Reset, –	- = unimple	= unimplemented, read as		^{0'.} Reset values are shown in hexadecimal.	are shown in	hexadecim	ıal.								

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							S	see definit	See definition when WIN = x	×= NI/							
C1BUFPNT1	0420		F3BP<3:0>	<3:0>			F2BP<3:0>	<3:0>			F1BP<3:0>	:3:0>			F0BP<3:0>	<3:0>		0000
C1BUFPNT2	0422		F7BP<3:0>	<3:0>			F6BP<3:0>	<3:0>			F5BP<3:0>	:3:0>			F4BP<3:0>	<3:0>		0000
C1BUFPNT3	0424		F11BP<3:0>	<3:0>			F10BP<3:0>	<3:0>			F9BP<3:0>	(3:0>			F8BP<3:0>	<3:0>		0000
C1BUFPNT4	0426		F15BP<3:0>	<3:0>			F14BP<3:0>	<3:0>			F13BP<3:0>	<3:0>			F12BP<3:0>	<3:0>		0000
C1RXM0SID	0430				SID<10:3>	10:3>					SID<2:0>		Ι	MIDE	Ι	EID<	EID<17:16>	XXXX
C1RXM0EID	0432				EID<15:8>	15:8>							EID<7:0>	<0;				XXXX
C1RXM1SID	0434				SID<10:3>	10:3>					SID<2:0>		I	MIDE		EID<	EID<17:16>	XXXX
C1RXM1EID	0436				EID<15:8>	15:8>							EID<7:0>	<0;				XXXX
C1RXM2SID	0438				SID<10:3>	10:3>					SID<2:0>		I	MIDE	I	EID<	EID<17:16>	XXXX
C1RXM2EID	043A				EID<15:8>	15:8>							EID<7:0>	<0;				XXXX
C1RXF0SID	0440				SID<10:3>	10:3>					SID<2:0>		I	EXIDE	I	EID<	EID<17:16>	XXXX
C1RXF0EID	0442				EID<15:8>	15:8>							EID<7:0>	<0;				XXXX
C1RXF1SID	0444				SID<10:3>	10:3>					SID<2:0>		I	EXIDE	I	EID<	EID<17:16>	XXXX
C1RXF1EID	0446				EID<15:8>	15:8>							EID<7:0>	<0:				XXXX
C1RXF2SID	0448				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<	EID<17:16>	XXXX
C1RXF2EID	044A				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF3SID	044C				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<	EID<17:16>	XXXX
C1RXF3EID	044E				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF4SID	0450				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<	EID<17:16>	XXXX
C1RXF4EID	0452				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF5SID	0454				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<	EID<17:16>	XXXX
C1RXF5EID	0456				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF6SID	0458				SID<10:3>	10:3>					SID<2:0>			EXIDE	Ι	EID<	EID<17:16>	XXXX
C1RXF6EID	045A				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF7SID	045C				SID<10:3>	10:3>					SID<2:0>			EXIDE		EID<	EID<17:16>	XXXX
C1RXF7EID	045E				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF8SID	0460				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<	EID<17:16>	XXXX
C1RXF8EID	0462				EID<15:8>	15:8>							EID<7:0>	<0: -				XXXX
C1RXF9SID	0464				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<	EID<17:16>	XXXX
C1RXF9EID	0466				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1RXF10SID	0468				SID<10:3>	10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<	EID<17:16>	XXXX
C1RXF10EID	046A				EID<15:8>	15:8>							EID<7:0>	<0>				XXXX
C1PXF11SID	0460				SID<10.35	10.3>					SID<2.0>			FXIDF		FID<	EID<17-16>	~~~~

TABLE 3-23: ECAN1 REGISTER MAP WHEN	CAN1		REGIST	ER MAI	P WHEN		RL1.WI	N = 1 (FOR ds	PIC33FJ	128MC8	302/804	AND ds	PIC33F.	J64MC8	C1CTRL1.WIN = 1 (FOR dsPIC33FJ128MC802/804 AND dsPIC33FJ64MC802/804) (CONTINUED)	CONTIN	NUED)
Addr Bit 15 Bit 14 Bit 13 Bi	Bit 15 Bit 14 Bit 13	Bit 14 Bit 13	Bit 13	Bi	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
046E					EID<15:8>	15:8>							EID<7:0>	<0:2				XXXX
0470					SID<10:3>	10:3>					SID<2:0>		-	EXIDE		EID<17:16>	:16>	XXXX
0472					EID<	EID<15:8>							EID<7:0>	<0:2				XXXX
0474 S	S	S	S	S	Ъ<	SID<10:3>					SID<2:0>		-	EXIDE		EID<17:16>	:16>	XXXX
0476 EI	E	E	E	Ξ	Å	EID<15:8>							EID<7:0>	<0:2				XXXX
S 8/10	S	S	S	S	ě	SID<10:3>					SID<2:0>		I	EXIDE	-	EID<17:16>	:16>	XXXX
047A E	Ш	Ш	Ш	ш	D<	EID<15:8>							EID<7:0>	<0:7				XXXX
047C					SID	SID<10:3>					SID<2:0>		Ι	EXIDE	Ι	EID<17:16>	:16>	XXXX
047E	Ш	ш	ш	ш	Ň	EID<15:8>							EID<7:0>	<0:2				XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-24:	-24:	PER	IPHER	SAL PI	PERIPHERAL PIN SELECT INPU	LINPUT F	JT REGISTER MAP	R MAP										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINRO	0680		Ι	I			INT1R<4:0>			I	I	I	I	1	1	I	I	1F00
RPINR1	0682		Ι			I			I	Ι	Ι	I			INT2R<4:0>			001F
RPINR3	0686		Ι				T3CKR<4:0>			Ι	Ι	Ι			T2CKR<4:0>			1F1F
RPINR4	0688		Ι				T5CKR<4:0>			Ι	Ι	Ι			T4CKR<4:0>			1F1F
RPINR7	068E		Ι				IC2R<4:0>			Ι	I	Ι			IC1R<4:0>			1F1F
RPINR10	0694		Ι				IC8R<4:0>			Ι	Ι	Ι			IC7R<4:0>			1F1F
RPINR11	9690	Ι	Ι		Ι	Ι			Ι	Ι	Ι	Ι		0	OCFAR<4:0>			001F
RPINR12	8690	Ι	Ι		Ι	I	I	I	I	Ι	I	I		Ľ	FLTA1R<4:0>			001F
RPINR13	069A		Ι		I				I	Ι	Ι	Ι		H	FLTA2R<4:0>			001F
RPINR14	069C	Ι	Ι				QEB1R<4:0>			Ι	Ι	Ι		0	QEA1R<4:0>			1F1F
RPINR15	069E	Ι	Ι		I	I			I	Ι	I	Ι		-	INDX1R<4:0>	•		001F
RPINR16	06A0	Ι	Ι				QEB2R<4:0>			Ι	Ι	Ι		0	QEA2R<4:0>			1F1F
RPINR17	06A2	I	Ι		I	I			I	Ι	I	Ι		-	INDX2R<4:0>	•		001F
RPINR18	06A4	I	I			ſ	U1CTSR<4:0>			Ι	I	I		l	U1RXR<4:0>			1F1F
RPINR19	06A6	Ι	Ι			ſ	U2CTSR<4:0>			Ι	I	I		l	U2RXR<4:0>			1F1F
RPINR20	06A8	I	I			••	SCK1R<4:0>			Ι	I	I			SDI1R<4:0>			1F1F
RPINR21	06AA	I	Ι		I		I		I	Ι	I	Ι			SS1R<4:0>			001F
RPINR22	06AC		I			••	SCK2R<4:0>			Ι	I	I			SDI2R<4:0>			1F1F
RPINR23	06AE	I	I		I	I			I	Ι	I	Ι			SS2R<4:0>			001F
RPINR26 ⁽¹⁾	06B4				I				I	Ι	I	I		0	C1RXR<4:0>			001F
Legend: Note 1:	x = unk This reç	nown va jister is	alue on R present f	teset, — F	x = unknown value on Reset, — = unimplemented, read. This register is present for dsPIC33FJ128MC802/804 an	ed, read as '0' 2/804 and dsF	as '0'. Reset values are shown in hexadecimal d dsPIC33FJ64MC802/804 devices only.	are shown in 302/804 devic	i hexadecimal ces only.									

TABLE 3-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128MC202/802, dsPIC33FJ64MC202/802 AND dsPIC33FJ32MC302 dsPIC33FJ32MC302 dsPIC33FJ32MC202/802, dsPIC33FJ64MC202/802 dsPIC33FJ64MC202/802 AND dsPIC33FJ32MC302 File Name Addr Bit 14 Bit 10 Bit 9 Bit 7 Bit 6 Bit 2 Bit 10 Bit 10 Bit 7 Bit 6 Bit 2 Bit 10 Bit 10 Bit 7 Bit 6 Bit 2 Bit 10 Bit 10 Bit 7 Bit 6 Bit 2 Bit 10 Bit 10 Bit 2 Bit 2 Bit 2 <th colsp<="" th=""><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th>				
CUTPUT REGISTER MAP F 12 Bit 11 Bit 10 Bit 9 RP1R<410> RP3R<410>	9	Bit 0			
CUTPUT REGISTER MAP F 12 Bit 11 Bit 10 Bit 9 RP1R<410> RP3R<410>	/802 AN	Bit 1			
CUTPUT REGISTER MAP F 12 Bit 11 Bit 10 Bit 9 RP1R<4:0> RP3R<4:0>	4MC202	Bit 2	RP0R<4:0>	RP2R<4:0>	
CUTPUT REGISTER MAP F 12 Bit 11 Bit 10 Bit 9 RP1R<4:0> RP3R<4:0>	C33FJ6	Bit 3			
CUTPUT REGISTER MAP F 12 Bit 11 Bit 10 Bit 9 RP1R<4:0> RP3R<4:0>)2, dsPI	Bit 4			
CUTPUT REGISTER MAP F 12 Bit 11 Bit 10 Bit 9 RP1R<410> RP3R<410>	3202/80	Bit 5	Ι		
CUTPUT REGISTER MAP F 12 Bit 11 Bit 10 Bit 9 RP1R<4:0> RP3R<4:0>	J128MG	Bit 6	I		
CUTPUT REGISTER MAP F 12 Bit 11 Bit 10 Bit 9 RP1R<4:0> RP3R<4:0>	PIC33F	Bit 7	Ι	I	
TABLE 3-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP ds PIC33FJ32MC302 file Name Addr Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 9 RPOR0 06C0 RP1R<4:0> RPOR1 06C2 RP3R<44:0>	FOR ds	Bit 8			
TABLE 3-25: PERIPHERAL PIN SELECT OUTPUT REGIST dsPIC33FJ32MC302 File Name Addr Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 RPOR0 06C0 - - - - RPIR<4:0> RPOR1 06C2 - - - RPIR< RPIR<4:0>	ER MAP	Bit 9			
TABLE 3-25: PERIPHERAL PIN SELECT OUTPUT dsPIC33FJ32MC302 File Name Addr Bit 15 Bit 13 Bit 12 Bit 11 RPOR0 06C0 -	REGIST	Bit 10	RP1R<4:0>	RP3R<4:0>	
TABLE 3-25: PERIPHERAL PIN SELECT C dsPIC33FJ32MC302 File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 RPOR0 06C0 - - - - - RPOR1 06C2 - - - - - -	UTPUT	Bit 11			
TABLE 3-25: PERIPHERAL PIN SE ds PIC 33FJ32MC302 File Name Addr Bit 15 Bit 14 Bit 13 RPOR0 06C0 - - - - RPOR1 06C2 - - - - -	LECT C	Bit 12			
TABLE 3-25: PERIPHERAL dsPIC33FJ32A File Name Addr Bit 15 Bit 14 RPOR0 06C0 - - - RPOR1 06C2 - - -	PIN SE AC302	Bit 13	I		
TABLE 3-25: PERIPICA dsPIC3 dsPIC3 File Name Addr Bit 15 RPOR0 06C0 - RPOR1 06C2 -	HERAL 3FJ32N	Bit 14	I		
File Name Addr RPOR0 06C0 RPOR1 06C2	PERIPI dsPIC3	Bit 15	I	I	
File Name RPOR0 RPOR1	-25:	Addr	06C0	06C2	
	TABLE 3	File Name	RPOR0	RPOR1	

AII Resets

0000 0000 0000 0000 0000

RP12R<4:0>

I I

I I

T

RP14R<4:0>

RP10R<4:0>

RP8R<4:0>

I Т

I

I

RP7R<4:0> RP9R<4:0>

RP5R<4:0>

T

RP11R<4:0> RP13R<4:0>

I

I

I

RPOR4 RPOR5 RPOR6

RPOR3

I

I

T

06CA

T

T

06C4 06C6 06C8 I

T

T

06CC 06CE

Legend:

RPOR7

0000

0000 0000

RP6R<4:0>

RP4R<4:0>

I

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,

RP15R<4:0>

PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128MC204/804, dsPIC33FJ64MC204/804 AND **TABLE 3-26:**

		dsPIC3	dsPIC33FJ32MC304	MC304														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0000						RP1R<4:0>				1	I			RP0R<4:0>			0000
RPOR1	06C2		I				RP3R<4:0>			I	I	I			RP2R<4:0>			0000
RPOR2	06C4		I	I			RP5R<4:0>			I	I	I			RP4R<4:0>			0000
RPOR3	0606			Ι			RP7R<4:0>			Ι		Ι		L.	RP6R<4:0>			0000
RPOR4	06C8		I				RP9R<4:0>			I	I	I			RP8R<4:0>			0000
RPOR5	06CA		I	I			RP11R<4:0>			I	I	I		R	RP10R<4:0>			0000
RPOR6	06CC			Ι			RP13R<4:0>			Ι		Ι		R	RP12R<4:0>			0000
RPOR7	06CE		I				RP15R<4:0>			I	I	I		R	RP14R<4:0>			0000
RPOR8	06D0	I	1	I			RP17R<4:0>			1	1			R	RP16R<4:0>			0000
RPOR9	06D2	-	Ι	Ι			RP19R<4:0>				1	I		R	RP18R<4:0>			0000
RPOR10	06D4			Ι			RP21R<4:0>			Ι		Ι		R	RP20R<4:0>			0000
RPOR11	06D6	Ι	Ι	Ι			RP23R<4:0>			I		I		R	RP22R<4:0>			0000
RPOR12	06D8		Ι	I			RP25R<4:0>			I	I	I		R	RP24R<4:0>			0000
Legend:	× = unk	nown value	on Reset,	— = unimpl	lemented, re	ead as '0'. F	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	are shown in	hexadecim	al.								

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

RPOR1 RPOR2 PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR dsPIC33FJ128MC202/802, dsPIC33FJ64MC202/802 AND dsPIC33FJ32MC302 **TABLE 3-27**:

											ecimal.	vn in hexade	— = unimplemented, read as '0'. Reset values are shown in hexadecimal.	. Reset vali	, read as '0	nplemented	— = unin	Legend:
0000	OB0E	OB1E	OB2E	OB3E	Ι		OBUF	OBE	IB0F	IB1F	IB2F	IB3F		I	IBOV	IBF	060E	PMSTAT
0000	<1:0>	PTEN<1:0>			I	I	I	I			I				PTEN14		060C	PMAEN
0000							ers 2 and 3)	ister 2 (Buffe	Data In Regi	Parallel Port Data In Register 2 (Buffers 2 and 3)	ц						060A	PMPDIN2
0000							ers 0 and 1)	ister 1 (Buffe	Data In Regi	Parallel Port Data In Register 1 (Buffers 0 and 1)	ц						0608	PMDIN1
0000						(fers 2 and 3)	jister 2 (Bufl	ata Out Reç	Parallel Port Data Out Register 2 (Buffers 2 and 3)	Å						0606	PMDOUT2
0000						(fers 0 and 1)	jister 1 (Bufl	ata Out Reç	Parallel Port Data Out Register 1 (Buffers 0 and 1)	Å						1000	PMDOUT1
0000							:13:0>	ADDR<13:0>							CS1	ADDR15	1090	PMADDR
0000	<1:0>	WAITE<1:0>		WAITM<3:0>	WAITN		WAITB<1:0>	WAITE	:<1:0>	MODE<1:0>	MODE16	<1:0>	INCM<1:0:	<1:0>	IRQM<1:0>	BUSY	0602	PMMODE
0000	RDSP	WRSP	BEP	CS1P	Ι	ALP	CSF0	CSF1	PTRDEN	PTWREN PTRDEN	PTBEEN	IX<1:0>	ADRMUX<1	PSIDL		PMPEN	0600	PMCON
All Resets	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bit 9	Bit 10	Bit 11	Bit 12	Bit 13	Bit 14	Bit 15	Addr	File Name Addr

PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR dsPIC33FJ128MC204/804, dsPIC33FJ64MC204/804 AND **VOCUNCCI TABLE 3-28:**

		dsPIC3	dsPIC33FJ32MC304	C304														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0090	PMPEN		PSIDL	ADRML	ADRMUX<1:0>	PTBEEN	PTWREN	PTRDEN	CSF1	CSF0	ALP		CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM	IRQM<1:0>	INCM	INCM<1:0>	MODE16	MODE<1:0>	<1:0>	WAITB<1:0>	<1:0>		WAITM<3:0>	1<3:0>		WAITE<1:0>	-1:0>	0000
PMADDR	1000	ADDR15	CS1							ADDR<13:0>	13:0>							0000
PMDOUT1	5000						ä	Parallel Port Data Out Register 1 (Buffers 0 and 1)	lata Out Reg	ijster 1 (Buffe	srs 0 and 1)							0000
PMDOUT2	0606						ä	Parallel Port Data Out Register 2 (Buffers 2 and 3)	lata Out Reg	ijster 2 (Buffe	srs 2 and 3)							0000
PMDIN1	0608						Ľ.	Parallel Port Data In Register 1 (Buffers 0 and 1)	Data In Regi	ster 1 (Buffe	's 0 and 1)							0000
PMPDIN2	060A						Ľ.	Parallel Port Data In Register 2 (Buffers 2 and 3)	Data In Regi	ster 2 (Buffe	's 2 and 3)							0000
PMAEN	060C	Ι	PTEN14	Ι	Ι						Р	PTEN<10:0>						0000
PMSTAT	060E	IBF	IBOV	Ι	Ι	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	Ι		OB3E	OB2E	OB1E	OB0E	0000
Legend:	— = unir	mplementec	l, read as '0	n'. Reset val	= unimplemented, read as '0'. Reset values are shown in	wn in hexadecimal	scimal.											

TABLE 3-29:		REAL-T	REAL-TIME CLOCK AND CALEN	OCK A	ND CAL		REGIS	DAR REGISTER MAP	٩									
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	1 Bit 10	0 Bit 9		Bit 8 E	Bit 7 B	Bit 6 B	Bit 5 Bi	Bit 4 Bit 3	3 Bit 2	2 Bit 1	Bit 0	All Resets
ALRMVAL	0620							Alarm Value Register Window based on APTR<1:0>	Register Wir	ndow based	on APTR<1	<0:						XXXX
ALCFGRPT	0622	ALRMEN	CHIME		AM/	AMASK<3:0>		AL	ALRMPTR<1:0>	<				ARPT<7:-0>				0000
RTCVAL	0624						Ч	RTCC Value Register Window based on RTCPTR<1:0>	Register Wind	tow based c	n RTCPTR<	<1:0>						XXXX
RCFGCAL	0626	RTCEN	Ι	RTCWRE	RTCWREN RTCSYNC	IC HALFSEC	EC RTCOE		RTCPTR<1:0>	_				CAL<7:0>				0000
Legend:	x = unkn	own value	on Reset, –	– = unimple	mented, re	ad as '0'. F	teset value	imes = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	in hexadeci	mal.								
TABLE 3-30:		CRC RE	CRC REGISTER MAP	R MAP														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	I		CSIDL			WORD<4:0>	6		CRCFUL	CRCMPT		CRCGO		PLE	PLEN<3:0>		0000
CRCXOR	0642								X<1	X<15:0>								0000
CRCDAT	0644								CRC Data I	CRC Data Input Register	Ļ							0000
CRCWDAT	0646								CRC Resi	CRC Result Register								0000
Legend:	— = unir	nplementec	= unimplemented, read as '0'. Reset values are shown)'. Reset va	lues are shi	own in hex;	in hexadecimal.											
TABLE 3-31 :		DUAL C	DUAL COMPARATOR REGISTE	RATOR	REGIS ⁻	TER MAP	ď											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	1	CZEVT	CIEVT	C2EN	C1EN	C2OUTEN	C10UTEN	I C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632							Ι	Ι	CVREN	CVROE	CVRR	CVRSS	6	CVI	CVR<3:0>		0000
Legend:	— = unir	nplementec	= unimplemented, read as '0'. Reset values are shown in hexadecimal	'. Reset va	lues are sh	own in hex;	adecimal.											
TABLE 3-32 :		PORTA	PORTA REGISTER MAP FOR dsi	TER MA	P FOR	dsPIC3	3FJ128	PIC33FJ128MC202/802, dsPIC33FJ64MC202/802 AND dsPIC33FJ32MC302	802, dsF	IC33FJ	64MC2(02/802	AND ds	PIC33F.	J32MC3	02		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	I	1	I	Ι	1	Ι	1	Ι	I	1	I	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2	I	T	I	Ι		Ι	Ι	Ι	Ι	Ι	I	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	I	I	I	I	I	Ι	Ι	I	I	I	Ι	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	I	I	I	I	I	Ι	Ι	I	I	I	I	I	I	Ι	I	I	XXXX
Legend:	× = unkn	own value	on Reset, –	– = unimpl∈	mented, re-	ad as '0'. F	teset values	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	in hexadeci	mal.								

DS70291B-page 55

	Bit 0 All Resets	TRISA0 079F	RA0 XXXX	LATA0 XXXX				Bit 0 All Resets	TRISBO FFF	RB0 XXXX	LATB0 XXXX			Bit 0 All Resets	TRISCO 03FF	RC0 XXXX	LATC0 XXXX	- xxxx		Bit 0 All Resets	POR XXXX ⁽¹⁾	z	0040	0030	0000	0000
	Bit 1 B	TRISA1 TR	RA1 F	LATA1 LA	1			Bit 1 B	TRISB1 TR	RB1 R	LATB1 LA	I		Bit 1 B	TRISC1 TR	RC1 F	LATC1 L/	Ι		Bit 1	BOR	z				
PIC33FJ128MC204/804, dsPIC33FJ64MC204/804 AND dsPIC33FJ32MC304	Bit 2	TRISA2 1	RA2	LATA2	I			Bit 2	TRISB2	RB2	LATB2	Ι	s '0'. Reset values are shown in hexadecimal. PIC33FJ128MC204/804, dSPIC33FJ64MC204/804 AND dSPIC33FJ32MC304	Bit 2	TRISC2 1	RC2	LATC2	-		Bit 2	IDLE	5	PLLPRE<4::0>		TUN<5:0>	I
IC33FJ3	Bit 3	TRISA3	RA3	LATA3	I			Bit 3	TRISB3	RB3	LATB3	Ι	IC33FJ3	Bit 3	TRISC3	RC3	LATC3	ODCC3		Bit 3	SLEEP	СF	<u>а</u>	<	TUN	I
AND dsP	Bit 4	TRISA4	RA4	LATA4	I			Bit 4	TRISB4	RB4	LATB4	Ι	AND dsP	Bit 4	TRISC4	RC4	LATC4	ODCC4		Bit 4	N WDTO			PLLDIV<8:0>		
04/804 /	Bit 5	I	I	I	I			Bit 5	TRISB5	RB5	LATB5	ODCB5	04/804 /	Bit 5	TRISC5	RC5	LATC5	ODCC5		Bit 5	SWDTEN		Ι			Ι
J64MC2	Bit 6	I	I		I			Bit 6	TRISB6	RB6	LATB6	ODCB6	J64MC2	Bit 6	TRISC6	RC6	LATC6	ODCC6		Bit 6	SWR	≚	PLLPOST<1:0>		Ι	L L
PIC33F.	Bit 7	TRISA7	RA7	LATA7	ODCA7	cimal.		Bit 7	3 TRISB7	RB7	LATB7	3 ODCB7	cimal. PIC33F,	Bit 7	TRISC7	RC7	LATC7	ODCC7	cimal.	Bit 7	S EXTR	ū	ЫЦГР		Ι	ASRCSEL
'804, ds	Bit 8	TRISA8	RA8	LATA8	ODCA8	in hexade		Bit 8	9 TRISB8	RB8	LATB8	ODCB8	in hexade 804, ds	Bit 8	TRISC8	RC8	LATC8	ODCC8	in hexade	Bit 8	VREGS		2:0>		Ι	<2:0>
3MC204	Bit 9	TRISA9	RA9	LATA9	ODCA9	s are shown		Bit 9	10 TRISB9	RB9	0 LATB9	0 ODCB9	s are shown 3MC204.	Bit 9	TRISC9	RC9	LATC9	ODCC3	s are show	0 Bit 9	CM	NOSC<2:0>	FRCDIV<2:0>			APSTSCLR<2:0>
33FJ128	Bit 10	TRISA10	RA10	LATA10	ODCA10	Reset value		Bit 10	11 TRISB10	RB10	1 LATB10	1 ODCB10	Reset value 33FJ128	Bit 10	I	Ι	1	Ι	Reset value	1 Bit 10			z			
dsPIC:	Bit 11	I	I	I	I	ead as '0'. I		Bit 11	2 TRISB11	RB11	2 LATB11	ODCB11	ead as '0'. { dsPIC :	Bit 11	I	Ι	Ι	Ι	ead as 'o'. R ER MAP	Bit 11			DOZEN			AOSCMD<1:0>
AP FOF	Bit 12	Ι	I	Ι	I	= unimplemented, read as '0'. Reset values are shown in hexadecimal	IAP	Bit 12	13 TRISB12	RB12	3 LATB12	Ι	IAP FOF	Bit 12	Ι	Ι		Ι	— = unimplemented, read as '0'. Reset values are shown in hexadecimal. TROL REGISTER MAP	Bit 12		-0	_0	I	Ι	AOSC
PORTA REGISTER MAP FOR ds	Bit 13	I	I	Ι	I		REGISTER MAP	t Bit 13	14 TRISB13	. RB13	4 LATB13	Ι	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. 35: PORTC REGISTER MAP FOR dsPIC33FJ128MC204/804, dsPIC	Bit 13	Ι	Ι	1	Ι	t, —= unim _t	Bit 13		COSC<2:0>	DOZE<2:0>		Ι	SELACLK
A REGI	Bit 14	Ι		Ι		x = unknown value on Reset,	B Regi	5 Bit 14	15 TRISB14	RB14	5 LATB14	Ι	Le on Reset	Bit 14	I	Ι	1	Ι	x = unknown value on Reset, — = unin 36: SYSTEM CONTROL	Bit 14	IOPUWR				Ι	Ι
PORT	Bit 15	I	I	Ι	I	ıknown valı	PORTB	r Bit 15	3 TRISB15	A RB15	C LATB15		Jknown vali PORT	Bit 15	Ι	Ι		Ι	Jknown valt SYST	r Bit 15	TRAPR	-	ROI	1		
3-33:	e Addr	02C0	02C2	02C4	02C6	x = ur	3-34:	e Addr	02C8	02CA	02CC	02CE	×≡ur 3-35:	e Addr	02D0	02D2	02D4	02D6	.	ie Addr	0740		0744	0746	۷ 0748	N 074A
TABLE	File Name	TRISA	PORTA	LATA	ODCA	Legend:	TABLE	File Name	TRISB	PORTB	LATB	ODCB	Legend: ×= TABLE 3-35:	File Name	TRISC	PORTC	LATC	ODCC	Legend: TABLE	File Name	RCON	OSCCON	CLKDIV	PLLFBD	OSCTUN	ACLKCON

DS70291B-page 56

© 2008 Microchip Technology Inc.

TABLE 3-37 :		SECUR	ит Υ RE	SECURITY REGISTER MAP FOR	RAP F	OR ds	PIC33F	J128MC	204/80	dsPIC33FJ128MC204/804 AND dsPIC33FJ64MC204/804 ONLY	sPIC33F	J64MC2	04/804	ΟΝΓΥ				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BSRAM	0250	Ι			I	I	I		1						IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	I	I	I	I	Ι	Ι	I	I	I	I	I	1	Ι	IW_ SSR	IR_SSR	RL_SSR	0000
Legend:	x = unkr	\mathbf{x} = unknown value on Reset, — = unimplemented, read as	on Reset, -	— = unimpl	emented, r	ead as '0'.	Reset valu	'0'. Reset values are shown in hexadecimal	vn in hexad	ecimal.								
TABLE 3-38 :		NVM REGISTER MAP	EGISTE	R MAP														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	0 Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0260	WR	WREN	WRERR	1						ERASE	1	I		NVMC	NVMOP<3:0>		0000
NVMKEY	0766	Ι	I	I	1	1		1	1				NVMK	NVMKEY<7:0>				0000
Legend:	x = unkr	nown value	on Reset, -	— = unimpl	emented, r	ead as '0'.	Reset valu	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	vn in hexad	ecimal.								
TABLE 3-39:		PMD R	PMD REGISTER MAP	R MAP														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0270	T5MD	T4MD	T3MD	T2MD	T1MD	QE11MD	PWM1MD	I	I2C1MD	U2MD	U1MD	SPI2MD	SP11MD	I	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD			Ι		IC2MD	IC1MD	Ι	Ι		Ι	OC4MD	OC3MD	OC2MD	OC1MD	0000

CRCMD = unimplemented, read as '0'. Reset values are shown in hexadecimal. PMPMD RTCCMD CMPMD T T x = unknown value on Reset, 0774 Legend: PMD3

I

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

0000

I

I

I

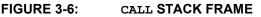
I

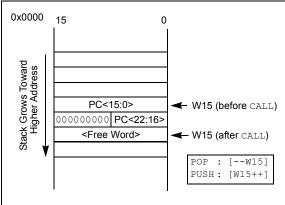
QEI2MD PWM2MD

DAC1MD

3.2.7 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 3-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

3.2.8 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 3-1 for an overview of the BSRAM and SSRAM SFRs.

3.3 Instruction Addressing Modes

The addressing modes shown in Table 3-40 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

3.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

3.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 3-40: FUNDAMENTAL ADDRESSING MODES SUPPORTED

3.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ
	for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not all instructions support all the address-
	ing modes given above. Individual instruc-
	tions may support different subsets of
	these addressing modes.

3.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset
	Addressir	ng mode i	is avai	lable only	for W9
	(in X spac	ce) and W	/11 (in	Y space).	

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

3.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

3.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

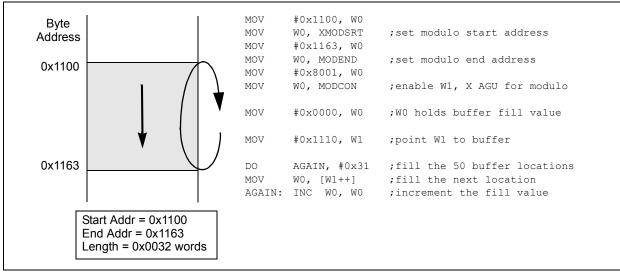
The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

3.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 3-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

3.4.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 3-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 3-7: MODULO ADDRESSING OPERATION EXAMPLE

3.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note:	The modulo corrected effective address is written back to the register only when Pre- Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 +
	W2]) is used, Modulo Address correction is performed but the contents of the regis- ter remain unchanged.

3.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

3.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

• BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)

- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing assumes priority when active for the X WAGU and X WAGU, Modulo Addressing is disabled. However, Modulo Addressing continues to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

Sequential Address b3 b2 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b1 0 Bit Locations Swapped Left-to-Right Around Center of Binary Value b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4 0 **Bit-Reversed Address Pivot Point** XB = 0x0008 for a 16-Word Bit-Reversed Buffer

FIGURE 3-8: BIT-REVERSED ADDRESS EXAMPLE

TABLE 3-41.			VENOE	D ADDINEOU UEQU								
		Norma	al Addre	SS			Bit-Rev	ersed Ac	ldress			
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal			
0	0	0	0	0	0	0	0	0	0			
0	0	0	1	1	1	0	0	0	8			
0	0	1	0	2	0	1	0	0	4			
0	0	1	1	3	1	1	0	0	12			
0	1	0	0	4	0	0	1	0	2			
0	1	0	1	5	1	0	1	0	10			
0	1	1	0	6	0	1	1	0	6			
0	1	1	1	7	1	1	1	0	14			
1	0	0	0	8	0	0	0	1	1			
1	0	0	1	9	1	0	0	1	9			
1	0	1	0	10	0	1	0	1	5			
1	0	1	1	11	1	1	0	1	13			
1	1	0	0	12	0	0	1	1	3			
1	1	0	1	13	1	0	1	1	11			
1	1	1	0	14	0	1	1	1	7			
1	1	1	1	15	1	1	1	1	15			

TABLE 3-41: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

3.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

3.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

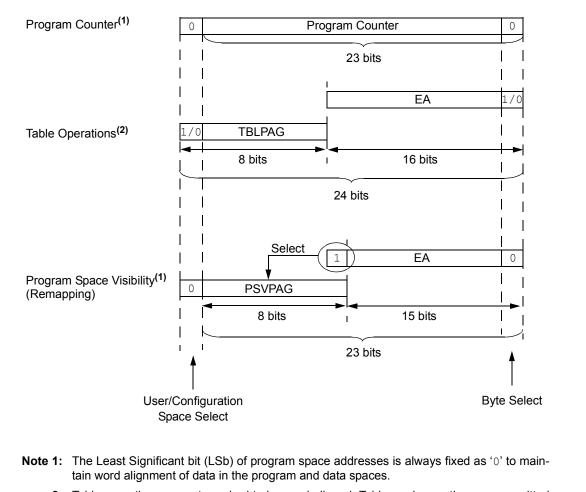

Table 3-42 and Figure 3-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

TABLE 3-42: PROGRAM SPACE ADDRESS CONSTRUCTION	
--	--

	Access	Program Space Address									
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>					
Instruction Access	User	0		PC<22:1>		0					
(Code Execution)			0xx xxxx x	XXX XXX							
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>						
(Byte/Word Read/Write)		0	XXX XXXX	XXXX XX	xx xxxx xxxx						
	Configuration	TB	LPAG<7:0>	Data EA<15:0>							
		1	XXX XXXX	XXXX X	* **** ****						
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0>(1)							
(Block Remap/Read)		0	XXXX XXXX	X	XXX XXXX XXXX XXXX						

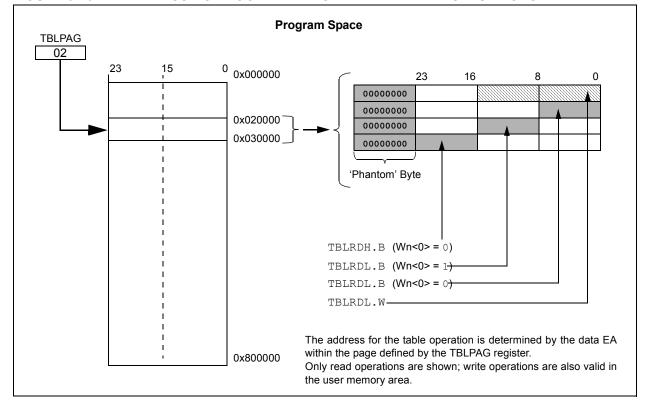
Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: Table operations are not required to be word aligned. Table read operations are permitted in the configuration memory space.

3.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 4.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 3-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

3.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

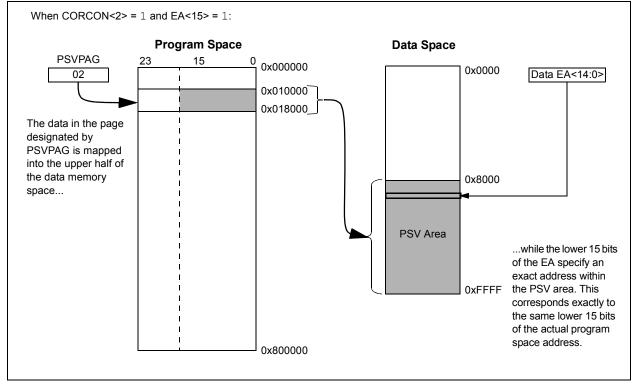
Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 3-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the $\ensuremath{\mathtt{REPEAT}}$ loop allows the instruction using PSV to access data, to execute in a single cycle.

4.0 FLASH PROGRAM MEMORY

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the "dsPIC33F Family Reference Manual",
	"Section 5. Flash Programming"
	(DS70191), which is available from the
	Microchip website (www.microchip.com).

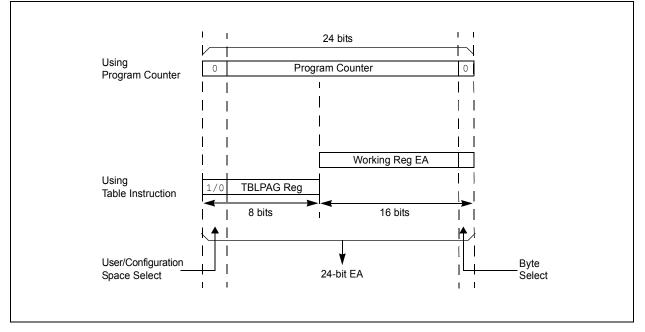
The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGC1/PGD1, PGC2/PGD2 or PGC3/PGD3), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


4.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 4-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

4.2 RTSP Operation

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 30-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

4.3 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 4-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 4.4 "Programming Operations"** for further details.

4.4 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. A programming operation is nominally 4 ms in duration and the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0			
WR	WREN	WRERR	_	_		_	_			
bit 15							bit 8			
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
	ERASE	—	_		NVMOF	><3:0> ⁽²⁾				
bit 7							bit (
Legend:		SO = Satiab	le only bit							
R = Readable bit		W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15	WR: Write Control bit									
	1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is									
	cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive									
hit 11	-	-	ion is compi	ete and mactive	;					
bit 14	WREN: Write Enable bit									
	 Enable Flash program/erase operations Inhibit Flash program/erase operations 									
bit 13	WRERR: Write Sequence Error Flag bit									
	1 = An improper program or erase sequence attempt or termination has occurred (bit is set									
	automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally									
h# 40 7				ipleted normally	/					
bit 12-7	Unimplemente									
bit 6	ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command									
	 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command 									
bit 5-4	Unimplemente	d: Read as '0	,							
bit 3-0	NVMOP<3:0>: NVM Operation Select bits ⁽²⁾									
	<u>If ERASE = 1:</u>									
	1111 = Memory bulk erase operation									
	1110 = Reserved									
	1101 = Erase General Segment 1100 = Erase Secure Segment									
	1011 = Reserved									
	0011 = No operation									
	0010 = Memory page erase operation									
	0001 = No operation 0000 = Erase a single Configuration register byte									
	If ERASE = 0:									
	1111 = No ope	ration								
	1110 = Reserved									
	1101 = No operation									
	1100 = No operation									
	1011 = Reserved									
	0011 = Memory word program operation 0010 = No operation									
	0001 = Memory row program operation									
			operation							
		y row program		egister byte						

2: All other combinations of NVMOP<3:0> are unimplemented.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		_	—	—	—	
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 4-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

4.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 4-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 4-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 4-3.

EXAMPLE 4-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation	
MOV #0x4042, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

EXAMPLE 4-2: LOADING THE WRITE BUFFERS

;	Set up NVMCON for row programming of	perations
	MOV #0x4001, W0	· ·
	MOV W0, NVMCON	; Initialize NVMCON
;	Set up a pointer to the first progra	am memory location to be written
	program memory selected, and writes	-
	MOV #0x0000, W0	i
	MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
	MOV #0x6000, W0	; An example program memory address
;	Perform the TBLWT instructions to wa	rite the latches
;	0th_program_word	
	MOV #LOW_WORD_0, W2	;
	MOV #HIGH_BYTE_0, W3	;
	TBLWTL W2, [W0]	; Write PM low word into program latch
	TBLWTH W3, [W0++]	; Write PM high byte into program latch
;	lst_program_word	
	MOV #LOW_WORD_1, W2	;
	MOV #HIGH_BYTE_1, W3	;
	TBLWTL W2, [W0]	; Write PM low word into program latch
	TBLWTH W3, [W0++]	; Write PM high byte into program latch
;	2nd_program_word	
	MOV #LOW_WORD_2, W2	;
	MOV #HIGH_BYTE_2, W3	;
	TBLWTL W2, [W0]	; Write PM low word into program latch
	TBLWTH W3, [W0++]	; Write PM high byte into program latch
	•	
	•	
	•	
;	63rd_program_word	
	MOV #LOW_WORD_31, W2	;
	MOV #HIGH_BYTE_31, W3	;
	TBLWTL W2, [W0]	; Write PM low word into program latch
	TBLWTH W3, [W0++]	; Write PM high byte into program latch

EXAMPLE 4-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

5.0 RESETS

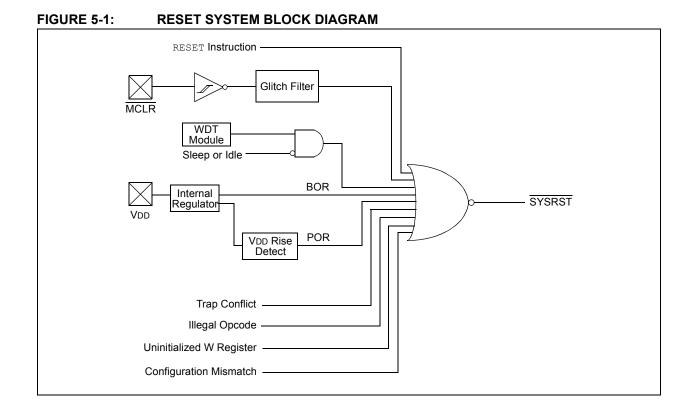
Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *dsPIC33F Family Reference Manual*, "Section 8. Reset" (DS70192), which is available from the Microchip website (www.microchip.com).

The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 5-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.


Note:	Refer to the specific peripheral section or			
	Section 2.0 "CPU" of this manual for			
	register Reset states.			

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 5-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

REGISTER 5	5-1: RCON	I: RESET CON	NTROL RE	GISTER ⁽¹⁾			
R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	—		—	—	CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7		-				-	bit (
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR			'0' = Bit is cle		x = Bit is unk	nown
bit 15 bit 14	1 = A Trap Co 0 = A Trap Co	o Reset Flag bit onflict Reset ha onflict Reset ha	s not occurre		et Elag bit		
Dit 14	1 = An illega Address	al opcode detect Pointer caused I opcode or unir	ction, an ille a Reset	gal address mo	ode or uninitia	lized W registe	er used as a
bit 13-10	Unimplemen	ited: Read as ')'				
bit 9	CM: Configuration Mismatch Flag bit 1 = A configuration mismatch Reset has occurred. 0 = A configuration mismatch Reset has NOT occurred.						
bit 8	 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep 						
bit 7	EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred						
bit 6	 SWR: Software Reset (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed 						
bit 5	 SWDTEN: Software Enable/Disable of WDT bit⁽²⁾ 1 = WDT is enabled 0 = WDT is disabled 						
bit 4	 WDT is disabled WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred 						
bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode						
bit 2	IDLE: Wake- 1 = Device w	up from Idle Fla as in Idle mode as not in Idle mo	g bit				
	ll of the Reset st ause a device R	tatus bits can be eset.	e set or cleare	ed in software. S	Setting one of t	hese bits in sof	tware does no
· · ·					· · · · ·		

REGISTER 5-1: RCON: RESET CONTROL REGISTER⁽¹⁾

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 5-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred
- bit 0 POR: Power-on Reset Flag bit 1 = A Power-up Reset has occurred 0 = A Power-up Reset has not occurred
 - **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

5.1 System Reset

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register selects the device clock source.

A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 5-2.

1. **POR Reset:** A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.

- BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures that the voltage regulator output becomes stable.
- 3. **PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
- Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 5-1. Refer to Section 8.0 "Oscillator Configuration" for more information.
- When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the reset address, which redirects program execution to the appropriate start-up routine.
- The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM elapsed.

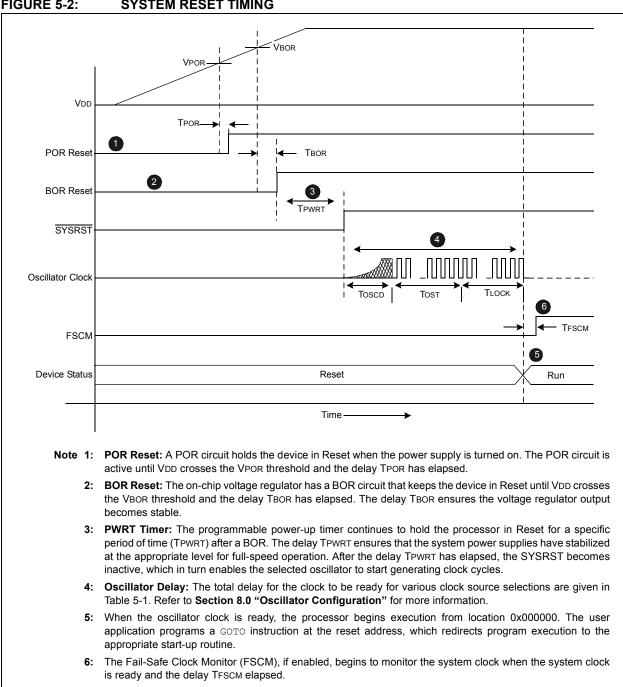

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay		
FRC, FRCDIV16, FRCDIVN	Toscd	—	—	Toscd		
FRCPLL	Toscd	—	TLOCK	TOSCD + TLOCK		
XT	Toscd	Tost	—	TOSCD + TOST		
HS	Toscd	Tost	—	TOSCD + TOST		
EC	_	—	—	—		
XTPLL	Toscd	Тоят	TLOCK	Toscd + Tost + TLOCK		
HSPLL	Toscd	Тоѕт	TLOCK	Toscd + Tost + TLOCK		
ECPLL	—	—	TLOCK	TLOCK		
SOSC	Toscd	Tost	—	Toscd + Tost		
LPRC	Toscd			Toscd		

TABLE 5-1:OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

FIGURE 5-2: SYSTEM RESET TIMING

Symbol	Parameter	Value
Vpor	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
Тғасм	Fail-Safe Clock Monitor Delay	900 μs maximum

TABLE 5-2:	OSCILLATOR DELAY

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get operating parameters all within specification.

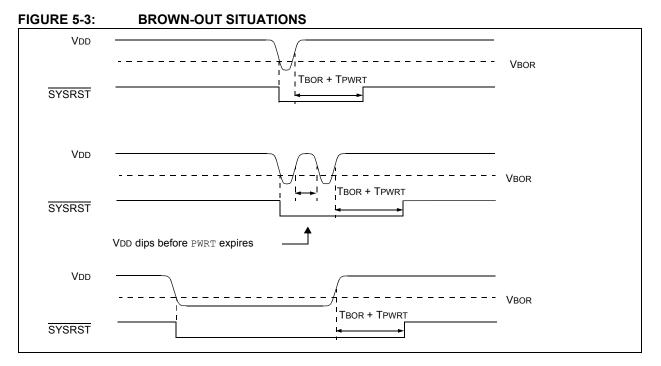
5.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to **Section 30.0 "Electrical Characteristics"** for details.

The POR status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

5.2.1 Brown-out Reset (BOR) and Power-up timer (PWRT)


The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the POR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 27.0 "Special Features"** for further details.

Figure 5-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

5.3 External Reset (EXTR)

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 30.0 "Electrical Characteristics"** for minimum pulse width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

5.3.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

5.3.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

5.4 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not reinitialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence. The Software Reset (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the software Reset.

5.5 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control (RCON<4>) register is set to indicate the Watchdog Reset. Refer to **Section 27.4 "Watchdog Timer (WDT)**" for more information on Watchdog Reset.

5.6 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 6.0 "Interrupt Controller"** for more information on trap conflict Resets.

5.7 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag (CM) bit in the Reset Control (RCON<9>) register is set to indicate the configuration mismatch Reset. Refer to **Section 10.0 "I/O Ports"** for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

5.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag (IOPUWR) bit in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

5.8.0.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

5.8.0.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

5.8.0.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 27.8 "Code Protection and CodeGuard Security" for more information on Security Reset.

5.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 5-3 provides a summary of the reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR,BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR,BOR
CM (RCON<9>)	Configuration Mismatch	POR,BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR,BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR,BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR,BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR,BOR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	

TABLE 5-3: RESET FLAG BIT OPERATION

Note: All Reset flag bits can be set or cleared by user software.

6.0 INTERRUPT CONTROLLER

Note:	This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual" "Section 6
	Reference Manual", "Section 6. Interrupts" (DS70184), which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- · Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

6.1 Interrupt Vector Table

The Interrupt Vector Table (IVT), shown in Figure 6-1, resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices implement up to 53 unique interrupts and five nonmaskable traps. These are summarized in Table 6-1.

6.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 6-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

6.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 6-1: dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/ X04 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000002	
	Oscillator Fail Trap Vector	0,000004	
	Address Error Trap Vector	-	
	Stack Error Trap Vector	_	
		_	
	Math Error Trap Vector	_	
	DMA Error Trap Vector	_	
	Reserved	_	
	Reserved	0.000014	1
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1	_	
	~	-	
	~	-	
		0,000070	
	Interrupt Vector 52 Interrupt Vector 53	0x00007C 0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
≥	Interrupt Vector 53	0x00007E	
orit		0x000000	
Pri	~	-	
e	~	_	
Drd	Interrupt Vector 116	0x0000FC	
Decreasing Natural Order Priority	Interrupt Vector 117	0x0000FC	1
trus		0x0000100	
Na	Reserved	0x000100	
Ð	Reserved	0x000102	
asir	Reserved	_	
le	Oscillator Fail Trap Vector	-	
)ec	Address Error Trap Vector	-	
	Stack Error Trap Vector	-	
	Math Error Trap Vector DMA Error Trap Vector	_	
			7
	Reserved	_	
	Reserved	0,000114	
	Interrupt Vector 0 Interrupt Vector 1	0x000114	
		-	
	~	-	
	~ ~	-	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	~ Interrupt Vector 52	0x00017C	Alternate interrupt vector rable (AIVT)
	Interrupt Vector 52	0x00017C 0x00017E	
	Interrupt Vector 54	0x00017E	
		0x000180	
	~	-	
	~ ~	-	
	~ Interrupt Vector 116		J
	Interrupt Vector 117	0x0001FE	
★	Start of Code	0x0001FE	
	Start OF Code		

TABLE 6-1:	INTERRUPT VECT	ORS	
Vector Number	IVT Address	AIVT Address	Interrupt Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved
8	0x000014	0x000114	INT0 – External Interrupt 0
9	0x000016	0x000116	IC1 – Input Compare 1
10	0x000018	0x000118	OC1 – Output Compare 1
11	0x00001A	0x00011A	T1 – Timer1
12	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	0x00001E	0x00011E	IC2 – Input Capture 2
14	0x000020	0x000120	OC2 – Output Compare 2
15	0x000022	0x000122	T2 – Timer2
16	0x000024	0x000124	T3 – Timer3
17	0x000026	0x000126	SPI1E – SPI1 Error
18	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	0x00002A	0x00012A	U1RX – UART1 Receiver
20	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	0x00002E	0x00012E	ADC1 – ADC 1
22	0x000030	0x000130	DMA1 – DMA Channel 1
23	0x000032	0x000132	Reserved
24	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	0x000038	0x000138	CM – Comparator Interrupt
27	0x00003A	0x00013A	Change Notification Interrupt
28	0x00003C	0x00013C	INT1 – External Interrupt 1
29	0x00003E	0x00013E	Reserved
30	0x000040	0x000140	IC7 – Input Capture 7
31	0x000042	0x000142	IC8 – Input Capture 8
32	0x000044	0x000144	DMA2 – DMA Channel 2
33	0x000046	0x000146	OC3 – Output Compare 3
34	0x000048	0x000148	OC4 – Output Compare 4
35	0x00004A	0x00014A	T4 – Timer4
36	0x00004C	0x00014C	T5 – Timer5
37	0x00004E	0x00014E	INT2 – External Interrupt 2
38	0x000050	0x000150	U2RX – UART2 Receiver
39	0x000052	0x000152	U2TX – UART2 Transmitter
40	0x000054	0x000154	SPI2E – SPI2 Error
41	0x000056	0x000156	SPI2 – SPI2 Transfer Done
42	0x000058	0x000158	C1RX – ECAN1 RX Data Ready
43	0x00005A	0x00015A	C1 – ECAN1 Event
44	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	0x00005E	0x00015E	Reserved
46	0x000060	0x000160	Reserved

TABLE 6-1:INTERRUPT VECTORS

TABLE 6-1:	INTERRUPT VECT	ORS (CONTINUED)	
Vector Number	IVT Address	AIVT Address	Interrupt Source
47	0x000062	0x000162	Reserved
48	0x000064	0x000164	Reserved
49	0x000066	0x000166	Reserved
50	0x000068	0x000168	Reserved
51	0x00006A	0x00016A	Reserved
52	0x00006C	0x00016C	Reserved
53	0x00006E	0x00016E	PMP – Parallel Master Port
54	0x000070	0x000170	DMA – DMA Channel 4
55	0x000072	0x000172	Reserved
56	0x000074	0x000174	Reserved
57	0x000076	0x000176	Reserved
58	0x000078	0x000178	Reserved
59	0x00007A	0x00017A	Reserved
60	0x00007C	0x00017C	Reserved
61	0x00007E	0x00017E	Reserved
62	0x000080	0x000180	Reserved
63	0x000082	0x000182	Reserved
64	0x000084	0x000184	Reserved
65	0x000086	0x000186	PWM1 – PWM1 Period Match
66	0x000088	0x000188	QEI1 – Position Counter Compare
67	0x00008A	0x00018A	Reserved
68	0x00008C	0x00018C	Reserved
69	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	0x000090	0x000190	RTCC – Real Time Clock
71	0x000092	0x000192	FLTA1 – PWM1 Fault A
72	0x000094	0x000194	Reserved
73	0x000096	0x000196	U1E – UART1 Error
74	0x000098	0x000198	U2E – UART2 Error
75	0x00009A	0x00019A	CRC – CRC Generator Interrupt
76	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	0x0000A0	0x0001A0	C1TX – ECAN1 TX Data Request
79	0x0000A2	0x0001A2	Reserved
80	0x0000A4	0x0001A4	Reserved
81	0x0000A6	0x0001A6	PWM2 – PWM2 Period Match
82	0x0000A8	0x0001A8	FLTA2 – PWM2 Fault A
83	0x0000AA	0x0001AA	QEI2 – Position Counter Compare
84	0x0000AC	0x0001AC	Reserved
85	0x0000AE	0x0001AE	Reserved
86	0x0000B0	0x0001B0	DAC1R – DAC1 Right Data Request
87	0x0000B2	0x0001B2	DAC1L – DAC1 Left Data Request
88-126	0x0000B4-0x0000FE	0x0001B4-0x0001FE	Reserved
l	1	1	1

TABLE 6-1: INTERRUPT VECTORS (CONTINUED)

6.3 Interrupt Control and Status Registers

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

6.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

6.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

6.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

6.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

6.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 6-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

6.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 6-1 through Register 6-32 in the following pages.

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7	•						bit
Legend:							
C = Clear only bit R = Readable bit		bit	U = Unimplemented bit, read as '0'				
S = Set only bit W = Writable bit		bit	-n = Value at POR				
'1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unknown				

REGISTER 6-1: SR: CPU STATUS REGISTER⁽¹⁾

hit	7 5	
bit	7-0	

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 2-1: "SR: CPU STATUS Register".

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7	•				•		bit 0

REGISTER 6-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clear only bit			
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set	
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit,	read as '0'	

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 2-2: "CORCON: CORE Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 6-3: INTCON1: INTERRUPT CONTROL REGISTER 1	REGISTER 6-3:	INTCON1: INTERRUPT CONTROL REGISTER 1
---	---------------	---------------------------------------

REGISTER 6	-3: INTCO	0N1: INTERR	UPT CONTR		ER 1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_			
bit 7	BIVOLINI	Dimiteria		<i>THEORE</i>	OTALIAR	0001742	bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	NSTDIS: Inte	rrupt Nesting D)isable bit							
	 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled 									
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit						
	•	caused by ove not caused by								
bit 13	-	-								
		DVBERR: Accumulator B Overflow Trap Flag bit								
		not caused by								
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Enable bit									
		caused by cata not caused by								
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Enable bit									
	 1 = Trap was caused by catastrophic overflow of Accumulator B 0 = Trap was not caused by catastrophic overflow of Accumulator B 									
bit 10	OVATE: Accumulator A Overflow Trap Enable bit									
	1 = Trap over 0 = Trap disa	flow of Accum bled	ulator A							
bit 9	OVBTE: Accu	umulator B Ove	erflow Trap En	able bit						
	1 = Trap overflow of Accumulator B 0 = Trap disabled									
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ole bit						
	1 = Trap on c 0 = Trap disa	atastrophic ove	erflow of Accu	mulator A or B	enabled					
bit 7	SFTACERR: Shift Accumulator Error Status bit									
		or trap was caus or trap was not								
bit 6	DIV0ERR: Ar	ithmetic Error S	Status bit							
		or trap was caus or trap was not								
bit 5	DMACERR: I	DMA Controller troller error trap troller error trap	Error Status l has occurred	bit d						
bit 4		Arithmetic Error								
~										

- 1 = Math error trap has occurred
- 0 = Math error trap has not occurred

REGISTER 6-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	 1 = Stack error trap has occurred 0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 6	-4: INTCO	0N2: INTERR	UPT CONTR	ROL REGIST	ER 2				
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI	—	—	_	—	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
0-0	0-0	0-0	0-0	0-0	INT2EP	INT1EP	INT0EP		
bit 7		_			INTZEF		bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	ALTIVT: Enable Alternate Interrupt Vector Table bit								
	 1 = Use alternate vector table 0 = Use standard (default) vector table 								
bit 14	DISI: DISI In	struction Status	s bit						
	1 = DISI inst	ruction is active	9						
	0 = DISI inst	ruction is not a	ctive						
bit 13-3	Unimplemen	ted: Read as '0)'						
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect	Polarity Selec	t bit				
		on negative edg on positive edge							
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect	Polarity Selec	t bit				
	•	on negative edg	•						

REGISTER 6-4: INTCON2: INTERRUPT CONTROL REGISTER 2

0 = Interrupt on positive edge
 bit 0
 INTOEP: External Interrupt 0 Edge Detect Polarity Select bit
 1 = Interrupt on negative edge

0 = Interrupt on positive edge

REGISTER 6	-5: IFS0:	INTERRUPT	FLAG STAT	US REGISTE	ER 0					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF			
bit 15			·				bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF			
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unkn	iown			
bit 15	-	nted: Read as								
bit 14		1A Channel 1 D		complete Interr	upt Flag Status	s bit				
		request has or request has no								
bit 13	AD1IF: ADC	1 Conversion C	Complete Interr	upt Flag Statu	s bit					
		request has or request has no								
bit 12		•		n Statua hit						
		RT1 Transmitte request has oc		y Status bit						
		request has no								
bit 11	U1RXIF: UART1 Receiver Interrupt Flag Status bit									
		request has oc								
hit 10	-	request has no								
bit 10		I Event Interrup request has oc	-	אנ						
		request has no								
bit 9	SPI1EIF: SP	11 Error Interru	pt Flag Status	bit						
	1 = Interrupt request has occurred									
	-	request has no								
bit 8	T3IF: Timer3 Interrupt Flag Status bit									
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred									
bit 7	T2IF: Timer2 Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
	0 = Interrupt	request has no	ot occurred							
bit 6	OC2IF: Output Compare Channel 2 Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
bit 5	0 = Interrupt request has not occurred									
	•	IC2IF: Input Capture Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred								
		request has no								
bit 4	DMA0IF: DM	1A Channel 0 D	ata Transfer C	complete Interr	upt Flag Status	s bit				
		request has oc	curred							
	0 = Interrupt	request has no	curred ot occurred							
bit 3	0 = Interrupt T1IF: Timer1		curred ot occurred Status bit							

REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred

- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 6	6: IFS1:	INTERRUPT	FLAG STAT	US REGISTE	R 1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF			
bit 15				· · · · · · · · · · · · · · · · · · ·			bit 8			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC8IF	IC7IF		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF			
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15	1 = Interrupt	RT2 Transmitte request has oc request has no	curred	g Status bit						
bit 14		RT2 Receiver I		Status bit						
		request has oc request has no								
bit 13	INT2IF: Exte	rnal Interrupt 2	Flag Status bi	t						
		request has oc request has no								
bit 12	T5IF: Timer5 Interrupt Flag Status bit									
	•	request has oc request has no								
bit 11	T4IF: Timer4 Interrupt Flag Status bit									
	1 = Interrupt	request has oc request has no	curred							
bit 10	OC4IF: Output Compare Channel 4 Interrupt Flag Status bit									
		request has oc request has no								
bit 9	OC3IF: Outp	out Compare Ch	annel 3 Interr	upt Flag Status	bit					
	1 = Interrupt	request has oc request has no	curred							
bit 8	DMA2IF: DM	IA Channel 2 D	ata Transfer C	omplete Interro	upt Flag Status	s bit				
		request has oc request has no								
bit 7	IC8IF: Input Capture Channel 8 Interrupt Flag Status bit									
	•	request has oc request has no								
bit 6	IC7IF: Input Capture Channel 7 Interrupt Flag Status bit									
		request has oc								
	•	request has no								
hit E	Unimplemer	nted: Read as '	0'							
bit 5 bit 4		rnal Interrupt 1	-	t						
	1 = Interrupt	rnal Interrupt 1 request has oc request has no	curred	t						
	1 = Interrupt 0 = Interrupt CNIF: Input (request has oc	curred t occurred ation Interrupt							

REGISTER 6-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

© 2008 Microchip Technology Inc.

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMA4IF	PMPIF	0-0	0-0	<u> </u>		
 bit 15	DIVIAHI			_	_	_	bit
							bit
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimplemen	ted: Read as	·0'				
bit 14	DMA4IF: DM	A Channel 4 D	ata Transfer C	complete Interr	upt Flag Status	oit	
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	t occurred				
bit 13	PMPIF: Paral	lel Master Por	t Interrupt Flag	Status bit			
	1 = Interrupt r						
	0 = Interrupt r						
bit 12-5	Unimplemen						
bit 4				complete Interr	upt Flag Status	oit	
	1 = Interrupt r 0 = Interrupt r						
bit 3		•	pt Flag Status	ы; ; (1)			
DIL J	1 = Interrupt r			Dit			
	0 = Interrupt r						
bit 2	C1RXIF: ECA	N1 Receive D	ata Ready Inte	errupt Flag Sta	tus bit ⁽¹⁾		
	1 = Interrupt r		•				
	0 = Interrupt r	equest has no	ot occurred				
bit 1	SPI2IF: SPI2	Event Interrup	ot Flag Status b	bit			
	1 = Interrupt r						
	0 = Interrupt r	•					
bit 0			pt Flag Status	bit			
	1 = Interrupt r						
	0 = Interrupt r	equest has no	ot occurred				

REGISTER 6-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts disabled on devices without ECAN™ modules

REGISTER	0-0. IF33.		LAG STA	IUS REGIST	EKJ		
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
FLTA1IF	RTCIF	DMA5IF	_	_	QEI1IF	PWM1IF	
bit 15				·	·		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 7							bit (
Legend:							
R = Readabl		W = Writable b	bit	•	mented bit, rea		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
L:1 4 F				Mat			
bit 15		/M1 Fault A Inte request has occ		datus dit			
		request has not					
bit 14	-	Time Clock/Cal		upt Flag Status	bit		
		request has occ					
	0 = Interrupt	request has not	occurred				
bit 13	DMA5IF: DM	IA Channel 5 Da	ata Transfer	Complete Inter	rupt Flag Status	s bit	
		request has occ					
	•	request has not					
bit 12-11	•	nted: Read as '0					
bit 10		1 Event Interrupt	•	s bit			
		request has occ request has not					
bit 9	•	M1 Error Interro		tue hit			
DIL 9		request has occ		เนอ มเเ			
		request has not					
bit 8-0	Unimplemer	nted: Read as '0)'				

REGISTER 6-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0			
DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	_	_	QEI2IF	FLTA2IF	PWM2IF	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF				
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkno	own			
bit 15	DAC1LIF: DA	C Left Chann	el Interrunt Ela	n Status bit ⁽²⁾						
	1 = Interrupt r									
	0 = Interrupt r									
bit 14	DAC1RIF: DA	C Right Char	nel Interrupt F	lag Status bit ⁽²	2)					
	1 = Interrupt r									
bit 13-12	0 = Interrupt r Unimplement	•								
bit 11	-			hit						
	QEI2IF: QEI2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt r									
bit 10	FLTA2IF: PW	M2 Fault A In	terrupt Flag Sta	atus bit						
	1 = Interrupt r									
bit 9	0 = Interrupt r PWM2IF: PW	-		+						
DIL 9	1 = Interrupt r		•	L						
	0 = Interrupt r									
bit 8-7	Unimplement	ted: Read as	ʻ0 '							
bit 6	C1TXIF: ECA	N1 Receive D	ata Ready Inte	errupt Flag Sta	tus bit ⁽¹⁾					
	1 = Interrupt r									
bit 5	0 = Interrupt r	•		`omolete Interi	runt Elan Status	bit				
bit 0	DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt r									
bit 4	DMA6IF: DM	A Channel 6 E	ata Transfer C	Complete Interi	rupt Flag Status	bit				
	1 = Interrupt r	•								
bit 3	0 = Interrupt r CRCIF: CRC	-		utue hit						
DIL J	1 = Interrupt r									
	0 = Interrupt r	•								
bit 2	U2EIF: UART	2 Error Interru	upt Flag Status	bit						
	1 = Interrupt r									
bit 1	0 = Interrupt r U1EIF: UART	-		hit						
	1 = Interrupt r									
	0 = Interrupt r									
bit 0	Unimplement	ted: Read as	ʻ0 '							
Note 1: Int	errupts disabled	d on devices v	vithout FCAN⊺	™ modules						
	errupto disabled									

REGISTER 6-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

2: Interrupts disabled on devices without DAC modules.

REGISTER 6	6-10: IEC0:	INTERRUPT	ENABLE CO	ONTROL REC	GISTER 0		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
pit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	DMA1IE: DM	IA Channel 1 D	ata Transfer C	omplete Interru	upt Enable bit		
		request enable					
	0 = Interrupt	request not ena	abled				
bit 13		1 Conversion C	•	upt Enable bit			
		request enable					
oit 12	•	request not ena RT1 Transmitte		hla hit			
JIL IZ		request enable	=				
		request not enable					
bit 11	U1RXIE: UA	RT1 Receiver I	nterrupt Enable	e bit			
	1 = Interrupt	request enable	d				
	-	request not ena					
oit 10		Event Interrup					
		request enable request not ena					
bit 9	-	11 Error Interru					
JIL9		request enable					
		request not enable					
bit 8	T3IE: Timer3	Interrupt Enab	le bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 7		Interrupt Enab					
		request enable					
bit 6	-	request not ena ut Compare Ch		unt Enchlo hit			
JILO	•	request enable		ומטופ טונ			
		request not enable					
bit 5	IC2IE: Input (Capture Chann	el 2 Interrupt E	Enable bit			
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
oit 4				omplete Interru	upt Enable bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 3	0 = Interrupt T1IE: Timer1		abled le bit				

REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Flag Status bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15	-		-				bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE	IC7IE		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7	IONE			ONIE	OWIL	WIZO IIE	bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		ʻ0' = Bit is cle		x = Bit is unkr	nown
bit 15	1 = Interrupt	RT2 Transmitter request enabled request not ena	d	able bit			
bit 14	1 = Interrupt	RT2 Receiver Ir request enable request not ena	d	le bit			
bit 13	1 = Interrupt	rnal Interrupt 2 request enable request not ena	b				
bit 12	1 = Interrupt	Interrupt Enable request enable request not ena	b				
bit 11	1 = Interrupt	Interrupt Enab request enable request not ena	d				
bit 10	OC4IE: Output 1 = Interrupt	ut Compare Ch request enabled request not ena	annel 4 Interr d	upt Enable bit			
bit 9	OC3IE: Output 1 = Interrupt I	ut Compare Ch request enable request not ena	annel 3 Interr d	upt Enable bit			
bit 8	1 = Interrupt	A Channel 2 D request enable request not ena	d	Complete Interr	upt Enable bit		
bit 7	1 = Interrupt	Capture Channe request enable request not ena	d	Enable bit			
bit 6	1 = Interrupt	Capture Channe request enable request not ena	d	Enable bit			
bit 5	Unimplemen	ted: Read as '	כי				
bit 4	1 = Interrupt	rnal Interrupt 1 request enable request not ena	b				
bit 3	CNIE: Input C	Change Notifica request enable	tion Interrupt	Enable bit			

© 2008 Microchip Technology Inc.

0 = Interrupt request not enabled

REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	DMA4IE	PMPIE		_	_	_	_
bit 15	Billivine						bit
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE
bit 7							bit
Legend:							
R = Readab		W = Writable			mented bit, read		
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unki	nown
L:1 4 F							
bit 15	-	nted: Read as '					
bit 14		IA Channel 4 E		complete Interr	upt Enable bit		
		request enable					
		request not en		bl. b.:4			
bit 13		allel Master Por	•	DIE DIT			
		request enable					
	∩ = Intorrunt						
hit 12.5	0 = Interrupt	•					
	Unimpleme	nted: Read as	0'	amplata Interr	unt Enchlo hit		
	Unimpleme DMA3IE: DN	nted: Read as /A Channel 3 D	o' Oata Transfer C	complete Interr	upt Enable bit		
	Unimplemen DMA3IE: DN 1 = Interrupt	n ted: Read as /A Channel 3 E request enable	o' Data Transfer C d	Complete Interr	upt Enable bit		
bit 12-5 bit 4 bit 3	Unimplemen DMA3IE: DN 1 = Interrupt 0 = Interrupt	n ted: Read as /A Channel 3 E request enable request has en	o' Data Transfer C d abled		rupt Enable bit		
bit 4	Unimplemen DMA3IE: DN 1 = Interrupt 0 = Interrupt C1IE: ECAN	nted: Read as /A Channel 3 E request enable request has en 1 Event Interru	o' bata Transfer C d abled pt Enable bit ⁽¹⁾		rupt Enable bit		
bit 4	Unimplemen DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt	n ted: Read as /A Channel 3 E request enable request has en	o' bata Transfer C d abled pt Enable bit ⁽¹⁾ d		upt Enable bit		
	Unimplemen DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt	nted: Read as IA Channel 3 E request enable request has en 1 Event Interru request enable request not en	o' Data Transfer C Id abled pt Enable bit ⁽¹⁾ Id abled				
bit 4	Unimplemen DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: EC	nted: Read as IA Channel 3 E request enable request has en 1 Event Interru request enable	o' Data Transfer C d abled pt Enable bit ⁽¹⁾ d abled Data Ready Inte				
bit 4 bit 3	Unimplemen DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: EC 1 = Interrupt	nted: Read as IA Channel 3 E request enable request has en 1 Event Interru request enable request not en AN1 Receive E	o' bata Transfer C d abled pt Enable bit ⁽¹⁾ d abled pata Ready Inte				
bit 4 bit 3 bit 2	Unimplemen DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: EC 1 = Interrupt 0 = Interrupt	nted: Read as IA Channel 3 E request enable request has en 1 Event Interru request enable request not en AN1 Receive E request enable	o' Data Transfer C abled pt Enable bit ⁽¹⁾ d abled Data Ready Inte abled				
bit 4 bit 3 bit 2	Unimplemen DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: EC 1 = Interrupt 0 = Interrupt SPI2IE: SPI2	nted: Read as IA Channel 3 E request enable request has en 1 Event Interru request enable request not en AN1 Receive E request enable request not en	o' Data Transfer C abled pt Enable bit ⁽¹⁾ d abled Data Ready Inte d abled bit Enable bit				
bit 4 bit 3 bit 2	Unimplemen DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: EC 1 = Interrupt 0 = Interrupt SPI2IE: SPI2 1 = Interrupt	nted: Read as IA Channel 3 E request enable request has en 1 Event Interru request enable request not en AN1 Receive E request enable request not en 2 Event Interrup	o' Data Transfer C abled pt Enable bit ⁽¹⁾ d abled Data Ready Inte d abled bt Enable bit d				
bit 4	Unimplemen DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: EC 1 = Interrupt 0 = Interrupt SPI2IE: SPI2 1 = Interrupt 0 = Interrupt	nted: Read as IA Channel 3 E request enable request has en 1 Event Interru request enable request not en AN1 Receive E request enable request not en 2 Event Interrup request enable	o' Data Transfer C abled pt Enable bit ⁽¹⁾ d abled Data Ready Inte d abled bt Enable bit abled				
bit 4 bit 3 bit 2 bit 1	Unimplemen DMA3IE: DM 1 = Interrupt 0 = Interrupt C1IE: ECAN 1 = Interrupt 0 = Interrupt C1RXIE: EC 1 = Interrupt 0 = Interrupt SPI2IE: SPI2 1 = Interrupt 0 = Interrupt	nted: Read as IA Channel 3 E request enable request has en 1 Event Interru request enable request not en AN1 Receive E request enable request not en 2 Event Interrup request enable request not en	o' Data Transfer C abled pt Enable bit ⁽¹⁾ d abled Data Ready Inte d abled ot Enable bit d abled pt Enable bit				

IECO, INTERDURT ENARLE CONTROL DECISTER 2

Note 1: Interrupts disabled on devices without ECAN™ modules

© 2008 Microchip Technology Inc.

REGISTER	6-13: IEC3:	INTERRUPT	ENABLE C		GISTER 3		
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
FLTA1IE	RTCIE	DMA5IE		—	QEI1IE	PWM1IE	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	—
bit 7	·						bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 14	0 = Interrupt RTCIE: Real 1 = Interrupt	request enabled request not ena -Time Clock/Cal request enabled request not ena	bled endar Interru I	ipt Enable bit			
bit 13	1 = Interrupt	1A Channel 5 Da request enablec request not ena	ł	Complete Interr	upt Enable bit		
bit 12-11	Unimplemer	nted: Read as ')'				
bit 10	1 = Interrupt	1 Event Interrup request enablec request not ena	ł				
bit 9		VM1 Error Interr request enabled	•	it			

REGISTER 6-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

0 = Interrupt request not enabled

Unimplemented: Read as '0'

bit 8-0

REGISTER 6	-14: IEC4: I	NTERRUPT	ENABLE CO	ONTROL RE	GISTER 4				
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0		
DAC1LIE ⁽²⁾	DAC1RIE ⁽²⁾	—		QEI2IE	FLTA2IE	PWM2IE			
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own		
bit 15	DAC1LIE: DA	C Left Channe	el Interrupt En	able bit ⁽²⁾					
	1 = Interrupt r	equest enable	d						
1.11.4.4		equest not ena							
bit 14		AC Right Chan request enable		nable bitt-					
		equest not ena							
bit 13-12	-	ted: Read as '							
bit 11		Event Interrup	0	bit					
		equest enable equest not ena							
bit 10	FLTA2IE: PWM2 Fault A Interrupt Enable bit								
		equest enable							
	-	equest not ena							
bit 9		M2 Error Inter equest enable	-	t					
		equest enable							
bit 8-7	Unimplemen	ted: Read as '	0'						
bit 6	C1TXIE: ECA	N1 Receive D	ata Ready Inte	errupt Enable I	bit ⁽¹⁾				
		equest occurre							
bit 5	•	equest not occ		`omplete Inter	rupt Enable bit				
		equest enable							
		equest not ena							
bit 4				Complete Inter	rupt Enable bit				
		equest enable equest not ena							
bit 3	-	Generator Inte		bit					
		equest enable	-						
	-	equest not ena							
bit 2		2 Error Interru	-						
		equest enable equest not ena							
bit 1	-	1 Error Interru							
		equest enable equest not ena							
bit 0	-	ted: Read as '							
	errupts disable			M modules					
	errupts disabled								
4. III				00000					

REGISTER 6-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
		T1IP<2:0>	1000 0			OC1IP<2:0>	1000 0		
bit 15		1111 2.0				00111 12.0	bit		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		IC1IP<2:0>		—		INT0IP<2:0>			
bit 7							bit		
Legend:									
R = Readable		W = Writable I	oit	-	mented bit, rea				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own		
bit 15	Unimplomo	nted: Read as '0	۰,						
bit 14-12	-								
DIL 14-12	T1IP<2:0>: Timer1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)								
	•	upt is priority 7 (i	lightest phone	iy menupi)					
	•								
	•								
		upt is priority 1							
		upt source is disa							
bit 11	-	nted: Read as '0							
bit 10-8		·: Output Compa		-	rity bits				
	111 = Interr	upt is priority 7 (h	highest priorit	ty interrupt)					
	•								
	•								
		upt is priority 1							
		upt source is disa							
bit 7	-	nted: Read as '0							
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits								
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)					
	•								
	•								
	001 = Interr	upt is priority 1							
	000 = Interr	upt source is disa	abled						
bit 3	Unimpleme	nted: Read as 'o)'						
bit 2-0	INT0IP<2:0>	External Interr	upt 0 Priority	bits					
	111 = Interre	upt is priority 7 (h	nighest priorif	ty interrupt)					
	•								
	•								
	001 = Intern	upt is priority 1							

...... _ _ _

DS70291B-page 104

REGISTER 6-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		T2IP<2:0>	T2IP<2:0>			OC2IP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		IC2IP<2:0>		—		DMA0IP<2:0>						
bit 7							bit 0					
Legend:												
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'								
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown						
bit 15	Unimpleme	nted: Read as ')'									
bit 14-12	T2IP<2:0>: Timer2 Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interrupt is priority 1											
	000 = Interrupt source is disabled											
bit 11	Unimplemented: Read as '0'											
bit 10-8	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
		upt is priority 1 upt source is disa	abled									
bit 7	Unimpleme	nted: Read as ')'									
bit 6-4	IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits											
	111 = Interr •	upt is priority 7 (ł	nighest priori	ty interrupt)								
	•											
		upt is priority 1 upt source is disa	abled									
bit 3		nted: Read as '(
bit 2-0	DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits											
		upt is priority 7 (ł				,						
	•											
	•											
		upt is priority 1 upt source is disa	abled									

REGISTER	6-17: IPC2	: INTERRUPT	PRIORITY	CONTROL R	EGISTER 2						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		U1RXIP<2:0>		—		SPI1IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		SPI1EIP<2:0>		_		T3IP<2:0>					
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'					
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			own					
bit 15	Unimplemented: Read as '0'										
bit 14-12	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1										
	000 = Interrupt source is disabled										
bit 11	Unimpleme	Unimplemented: Read as '0'									
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1										
	000 = Interrupt source is disabled										
bit 7	Unimpleme	ented: Read as '	0'								
bit 6-4	SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
		rupt is priority 1									
	000 = Interr	upt source is dis	abled								
bit 3	Unimplemented: Read as '0'										
bit 2-0	T3IP<2:0>: Timer3 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
		rupt is priority 1									
		upt source is dis	abled								

REGISTER 6-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—	—	—		DMA1IP<2:0>	
pit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		AD1IP<2:0>				U1TXIP<2:0>	
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable t	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	nt POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-11	Unimplomor	nted: Read as '0	,,				
	-						
bit 10-8		>: DMA Channe		-	Interrupt Prio	ority dits	
	111 - 1040 -						
	111 = Interru •	ipt is priority 7 (h	lighest priorit	y interrupt)			
	111 = Interru • •	ipt is priority 7 (h	nghest priorit	y interrupt)			
	111 = Interru • •	ipt is priority 7 (h	nghest priorit	y interrupt)			
	• • 001 = Interru	pt is priority 1		y interrupt)			
	• • 001 = Interru 000 = Interru	ipt is priority 1 ipt source is disa	abled	y interrupt)			
	• • 001 = Interru 000 = Interru Unimplemer	ipt is priority 1 ipt source is disa nted: Read as '0	abled				
	• • 001 = Interru 000 = Interru Unimplemer AD1IP<2:0>	ipt is priority 1 ipt source is disa nted: Read as '0 : ADC1 Convers	abled	e Interrupt Prio	ity bits		
	• • 001 = Interru 000 = Interru Unimplemer AD1IP<2:0>	ipt is priority 1 ipt source is disa nted: Read as '0	abled	e Interrupt Prio	ity bits		
	• • 001 = Interru 000 = Interru Unimplemer AD1IP<2:0>	ipt is priority 1 ipt source is disa nted: Read as '0 : ADC1 Convers	abled	e Interrupt Prio	ity bits		
bit 7 bit 6-4	• • 001 = Interru 000 = Interru Unimplemer AD1IP<2:0>	ipt is priority 1 ipt source is disa nted: Read as '0 : ADC1 Convers	abled	e Interrupt Prio	ity bits		
	• • • • 001 = Interru 000 = Interru Unimplemer AD1IP<2:0> 111 = Interru	ipt is priority 1 ipt source is disa nted: Read as '0 : ADC1 Convers	abled	e Interrupt Prio	ity bits		
	• • • • • • • • • • • • • • • • • • •	upt is priority 1 upt source is disa nted: Read as '0 : ADC1 Convers upt is priority 7 (h	abled ,' ion Complete iighest priorit	e Interrupt Prio	ity bits		
bit 6-4	• • • • • • • • • • • • • • • • • • •	upt is priority 1 upt source is disa nted: Read as '0 : ADC1 Convers upt is priority 7 (h	abled ,, ion Complete nighest priorit	e Interrupt Prio	ity bits		
	• • • • • • • • • • • • • •	upt is priority 1 upt source is disa nted: Read as '0 : ADC1 Convers upt is priority 7 (h upt is priority 1 upt source is disa	abled ,' ion Complete ighest priorit abled	e Interrupt Prior y interrupt)	ity bits		
bit 6-4 bit 3	• • • • • • • • • • • • • • • • • • •	upt is priority 1 upt source is disa nted: Read as '0 : ADC1 Convers upt is priority 7 (h upt is priority 1 upt source is disa nted: Read as '0	abled ion Complete iighest priorit abled	e Interrupt Prior y interrupt) pt Priority bits	ity bits		
bit 6-4 bit 3	• • • • • • • • • • • • • • • • • • •	upt is priority 1 upt source is disa nted: Read as '0 : ADC1 Convers upt is priority 7 (h upt is priority 1 upt source is disa nted: Read as '0 >: UART1 Trans	abled ion Complete iighest priorit abled	e Interrupt Prior y interrupt) pt Priority bits	ity bits		
bit 6-4 bit 3	• • • • • • • • • • • • • • • • • • •	upt is priority 1 upt source is disa nted: Read as '0 : ADC1 Convers upt is priority 7 (h upt is priority 1 upt source is disa nted: Read as '0 >: UART1 Trans	abled ion Complete iighest priorit abled	e Interrupt Prior y interrupt) pt Priority bits	ity bits		
bit 6-4 bit 3	• • • • • • • • • • • • • •	upt is priority 1 upt source is disa nted: Read as '0 : ADC1 Convers upt is priority 7 (h upt is priority 1 upt source is disa nted: Read as '0 >: UART1 Trans	abled ion Complete iighest priorit abled	e Interrupt Prior y interrupt) pt Priority bits	ity bits		

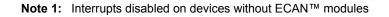
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		CNIP<2:0>	-	_		CMIP<2:0>	-
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		MI2C1IP<2:0>		—		SI2C1IP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	-	mented bit, re	ad as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	-	ented: Read as '					
bit 14-12		Change Notification		•			
	111 = Inte	rrupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		rrupt is priority 1					
		rrupt source is dis					
bit 11	-	ented: Read as '					
bit 10-8		>: Comparator Inte					
	111 = Inte	rrupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		rrupt is priority 1					
=		rrupt source is dis					
bit 7	-	nented: Read as '					
bit 6-4		2:0>: I2C1 Master			S		
	111 = Intel •	rrupt is priority 7 (I	nignest priori	ty interrupt)			
	•						
	•						
		rrupt is priority 1					
		rrupt source is dis					
bit 3	-	nented: Read as '					
bit 2-0		2:0>: I2C1 Slave E		• •			
	111 = Inte	rrupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		rrupt is priority 1					
	000 = Inte	rrupt source is dis	abled				

.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		IC8IP<2:0>		—		IC7IP<2:0>				
bit 15							bit 8			
U-0	U-1	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_	—	_		_		INT1IP<2:0>				
bit 7							bit (
Legend:										
R = Readable bit W = Writable bit				U = Unimpler	nented bit, rea	d as '0'				
n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	Unimplemented: Read as '0' IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits									
bit 14-12					its					
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)						
	•									
	•									
		rupt is priority 1 rupt source is dis	abled							
bit 11	Unimpleme	ented: Read as '	0'							
bit 10-8	IC7IP<2:0>	: Input Capture 0	Channel 7 Int	errupt Priority bi	its					
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)						
	•									
	•									
	001 = Interr	rupt is priority 1								
		upt source is dis	abled							
bit 7-3	Unimpleme	ented: Read as '	0'							
bit 2-0	INIT41D-200	>: External Inter								

© 2008 Microchip Technology Inc.

REGISTER	6-21: IPC6	: INTERRUPT	PRIORITY	CONTROL R	EGISTER 6		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		T4IP<2:0>		_		OC4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		OC3IP<2:0>		—		DMA2IP<2:0>	
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 15	Unimplem	ented: Read as ')'				
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits				
	111 = Inter	rupt is priority 7 (I	nighest prior	ity interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 11	Unimplem	ented: Read as ')'				
bit 10-8		>: Output Compa		-	ity bits		
	111 = Inter	rupt is priority 7 (I	nighest prior	ity interrupt)			
	•						
	•						
		rupt is priority 1					
		rupt source is dis					
bit 7	-	ented: Read as '					
bit 6-4		>: Output Compa		-	ity bits		
	111 = Inter •	rupt is priority 7 (I	lignest prior	ity interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	ahled				
bit 3		ented: Read as '					
bit 2-0	-	:0>: DMA Channe		ansfer Complete	Interrunt Prio	rity hits	
5112 0		rupt is priority 7 (I		-			
	•		J pon	· · · · · · · · · · · · · · · · · · ·			
	•						
	• 001 = Inter	rupt is priority 1					
		rupt source is dis	abled				


REGISTER 6-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

REGISTER 6-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		U2TXIP<2:0>		—		U2RXIP<2:0>			
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		INT2IP<2:0>		_		T5IP<2:0>			
bit 7							bit C		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	Bit is cleared x = Bit is unknown				
hit 1E	Unimplome	nted: Dood oo W	<u>,</u>						
bit 15	-	ented: Read as '							
bit 14-12		D>: UART2 Trans rupt is priority 7 (I)							
	•								
	•								
	001 = Interr	upt is priority 1							
		upt source is dis	abled						
bit 11	Unimpleme	ented: Read as '	o '						
bit 10-8	U2RXIP<2:	0>: UART2 Rece	ver Interrup	t Priority bits					
	111 = Interr	upt is priority 7 (I	highest priori	ty interrupt)					
	•								
	•								
	001 = Interr	upt is priority 1							
		upt source is dis	abled						
bit 7	Unimpleme	nted: Read as '	D'						
bit 6-4	INT2IP<2:0	>: External Interr	upt 2 Priority	/ bits					
		upt is priority 7 (I							
	•		•						
	•								
		upt is priority 1							
		upt source is dis							
bit 3	Unimpleme	ented: Read as '	כי						
bit 2-0		Timer5 Interrupt							
	111 = Interr	upt is priority 7 (I	highest priori	ity interrupt)					
	•								
	•								
		upt is priority 1 upt source is dis	ablad						
	000 - men	upt source is dis	abieu						

REGISTER (6-23: IPC8	: INTERRUPT F	RIURIT	CONTROL R	EGISTER 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		C1IP<2:0> ⁽¹⁾		—		C1RXIP<2:0> ⁽¹⁾	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	10/00-1	SPI2IP<2:0>	10,00-0	<u> </u>	10/00-1	SPI2EIP<2:0>	10.00-0
bit 7							bit
Levende							
Legend: R = Readable	∍ hit	W = Writable b	it	II = Unimple	mented bit, re	ad as '0'	
-n = Value at		'1' = Bit is set	ii ii	'0' = Bit is cle		x = Bit is unkn	own
		1 Dicio oct		o Bitio oit			own
bit 15	Unimpleme	ented: Read as '0	,				
bit 14-12	C1IP<2:0>:	ECAN1 Event Int	errupt Priori	ty bits ⁽¹⁾			
	111 = Interr	upt is priority 7 (h	ighest priori	ty interrupt)			
	•						
	•						
	• 001 = Interr	upt is priority 1					
		upt source is disa	bled				
bit 11		nted: Read as '0					
bit 10-8	C1RXIP<2:	0>: ECAN1 Recei	ve Data Rea	ady Interrupt Pi	riority bits ⁽¹⁾		
	111 = Interr	upt is priority 7 (h	ighest priori	ty interrupt)			
	•						
	•						
	• 001 = Interr	upt is priority 1					
		upt source is disa	bled				
bit 7	Unimpleme	ented: Read as '0	,				
bit 6-4	-	>: SPI2 Event Inte		y bits			
		upt is priority 7 (h	-	-			
	•						
	•						
	• 001 = Interr	upt is priority 1					
		upt source is disa	bled				
bit 3	Unimpleme	nted: Read as '0	,				
bit 2-0	-	0>: SPI2 Error In		ty bits			
		upt is priority 7 (h					
	•		- ·	• • •			
	•						
	• 001 – Int orr	upt is priority 1					

____ _ _

REGISTER 6-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	_		DMA3IP<2:0>	
bit 7		·		•	•		bit 0
Legend:							
R = Readable b	oit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	cleared x = Bit is unknown		
L							

bit 15-3 Unimplemented: Read as '0'

bit 2-0 DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	_	—		DMA4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		PMPIP<2:0>		—	—	-	_
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11 bit 10-8	DMA4IP<2:0 111 = Intern	nted: Read as 0>: DMA Chanr upt is priority 7 (upt is priority 1 upt source is dis	nel 4 Data Tra (highest priori	•	e Interrupt Priori	ty bits	
bit 7	Unimpleme	nted: Read as	ʻ0 '				
bit 6-4	PMPIP<2:0>	-: Parallel Mast	er Port Interru	upt Priority bits			
	111 = Interr	upt is priority 7 ((highest priori	ity interrupt)			
	•						
	•						
		upt is priority 1					
	000 = Interr	upt source is dis	sabled				

DECISTED 6-25 IDC11. INTERDURT DRIADITY CONTRAL REGISTER 11

Unimplemented: Read as '0' bit 3-0

REGISTER 6-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	_	—		QEI1IP<2:0>	
bit 15					•		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		PWM1IP<2:0>		—	—	_	—
bit 7							bit 0
Legend:							
R = Readabl		W = Writable		-	mented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 15-11	Unimpleme	nted: Read as '	0'				
bit 10-8	QEI1IP<2:0	>: QEI1 Interrup	t Priority bits				
	111 = Interr	upt is priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-4	PWM1IP<2:	0>: PWM1 Inter	rupt Priority b	oits			
	111 = Interr	upt is priority 7 (I	highest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
		upt source is dis	abled				
bit 3-0	Unimpleme	nted: Read as '	0'				
	-						

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	R/W-1	_	R/W-U	0-0	R/W-1		R/W-U
		FLTA1IP<2:0>				RTCIP<2:0>	h;
bit 15							bi
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		DMA5IP<2:0>					—
bit 7							bi
Legend:							
R = Readabl	le bit	W = Writable I	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 11 bit 10-8	000 = Inter Unimpleme RTCIP<2:0	rupt is priority 1 rupt source is disa ented: Read as '0 >: Real-Time Clo rupt is priority 7 (h)' ck/Calendar		Status bits		
		rupt is priority 1					
bit 7	Unimpleme	rupt source is dis ented: Read as 'o)'				
bit 7 bit 6-4	Unimpleme DMA5IP<2: 111 = Inter • • • 001 = Inter	-	₎ ' el 5 Data Tra highest priorit	•	Interrupt Prior	ity bits	

REGISTER 6-27: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

	REGISTER 6-28:	IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16
--	----------------	---

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		CRCIP<2:0>				U2EIP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		U1EIP<2:0>				—	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own
bit 15	Unimpleme	nted: Read as '0	,				
bit 14-12	CRCIP<2:0>	-: CRC Generato	r Error Interr	upt Flag Priorit	y bits		
		upt is priority 7 (h			-		
	•						
	•						
	001 = Interr	upt is priority 1					
		upt source is disa	bled				
bit 11	Unimpleme	nted: Read as '0	,				
bit 10-8	U2EIP<2:0>	: UART2 Error In	terrupt Prior	ity bits			
	111 = Interro	upt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	unt in uniquity 1					
		udi is driority i					
		upt is priority i upt source is disa	bled				
bit 7	000 = Intern						
	000 = Interro Unimpleme	upt source is disa	3	ity bits			
	000 = Intern Unimpleme U1EIP<2:0>	upt source is disa nted: Read as '0	, terrupt Prior	-			
	000 = Intern Unimpleme U1EIP<2:0>	upt source is disa nted: Read as '0 : UART1 Error In	, terrupt Prior	-			
	000 = Intern Unimpleme U1EIP<2:0>	upt source is disa nted: Read as '0 : UART1 Error In	, terrupt Prior	-			
bit 7 bit 6-4	000 = Intern Unimpleme U1EIP<2:0> 111 = Intern • •	upt source is disa nted: Read as '0 : UART1 Error In upt is priority 7 (h	, terrupt Prior	-			
	000 = Intern Unimpleme U1EIP<2:0> 111 = Intern • • • 001 = Intern	upt source is disa nted: Read as '0 : UART1 Error In	, terrupt Prior ighest priorit	-			

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_	_	_	_		C1TXIP<2:0>(1)	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		DMA7IP<2:0>				DMA6IP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle		x = Bit is unkn	own
bit 15-11	Unimpleme	nted: Read as '	כי				
bit 10-8		S ECANI Trong	mit Data Po	quest Interrupt	Priority bits ⁽¹⁾		
011 10-0	C11XIP<2:0	- ECANT Han		quoor interrupt	i noncy bito		
bit 10-0		upt is priority 7 (I					
bit 10-6					i nonty bite		
bit 10-0							
Dit 10-0	111 = Intern • •	upt is priority 7 (I					
DIL 10-0	111 = Intern • • • • • •		highest priorit				
	111 = Intern • • 001 = Intern 000 = Intern	upt is priority 7 (I upt is priority 1	highest priorit abled				
bit 7	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is dis	nighest priorit abled	ty interrupt)		rity bits	
bit 7	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as 'o	nighest priorit abled o ['] el 7 Data Trai	ty interrupt) nsfer Complete		rity bits	
bit 7	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Chann	nighest priorit abled o ['] el 7 Data Trai	ty interrupt) nsfer Complete		rity bits	
bit 7	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Chann	nighest priorit abled o ['] el 7 Data Trai	ty interrupt) nsfer Complete		rity bits	
bit 7 bit 6-4	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as 'd 0>: DMA Chann upt is priority 7 (I	nighest priorit abled o ['] el 7 Data Trai	ty interrupt) nsfer Complete		rity bits	
bit 7	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern 001 = Intern	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Chann	nighest priorit abled ₀ ' el 7 Data Trai nighest priorit	ty interrupt) nsfer Complete		rity bits	
bit 7 bit 6-4	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Chann upt is priority 7 (I upt is priority 1 upt source is dis	abled ^{o'} el 7 Data Trai highest priorit	ty interrupt) nsfer Complete		rity bits	
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern Unimpleme	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as 'o 0>: DMA Channe upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as 'o	abled o' el 7 Data Tra nighest priorit abled	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prior		
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern Unimpleme DMA6IP<2:(upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Chann upt is priority 7 (I upt source is dis nted: Read as '(0>: DMA Chann	abled ^{D'} el 7 Data Trai highest priorit abled D' el 6 Data Trai	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prior		
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern Unimpleme DMA6IP<2:(upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as 'o 0>: DMA Channe upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as 'o	abled ^{D'} el 7 Data Trai highest priorit abled D' el 6 Data Trai	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prior		
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern Unimpleme DMA6IP<2:(upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Chann upt is priority 7 (I upt source is dis nted: Read as '(0>: DMA Chann	abled ^{D'} el 7 Data Trai highest priorit abled D' el 6 Data Trai	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prior		
bit 7	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern Unimpleme DMA6IP<2:(111 = Intern	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Chann upt is priority 7 (I upt source is dis nted: Read as '(0>: DMA Chann	abled ^{D'} el 7 Data Trai highest priorit abled D' el 6 Data Trai	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prior		

. . . ---~ ~ ~ ~ ~ ~

Note 1: Interrupts disabled on devices without ECAN™ modules

REGISTER 6-30: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_	QEI2IP<2:0> —					FLTA2IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		PWM2IP<2:0>	-				_
bit 7		1 1111211 -2.0					bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-12	QEI2IP<2:0>	: QEI2 Interrup	t Priority bits				
	111 = Interru	upt is priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
		upt is priority 1 upt source is dis	abled				
oit 11	000 = Interru						
	000 = Interru Unimplemen	upt source is dis	0'	Priority bits			
	000 = Interru Unimplemer FLTA2IP<2:(upt source is dis nted: Read as '	0' t A Interrupt F	•			
	000 = Interru Unimplemer FLTA2IP<2:(upt source is dis nted: Read as ' 0>: PWM2 Fault	0' t A Interrupt F	•			
bit 11 bit 10-8	000 = Interru Unimplemer FLTA2IP<2:(upt source is dis nted: Read as ' 0>: PWM2 Fault	0' t A Interrupt F	•			
	000 = Interru Unimplemen FLTA2IP<2:(111 = Interru • •	upt source is dis nted: Read as 'n 0>: PWM2 Fault upt is priority 7 (l	0' t A Interrupt F	•			
	000 = Interru Unimplemen FLTA2IP<2:(111 = Interru • • 001 = Interru	upt source is dis nted: Read as ' 0>: PWM2 Fault	₀ ' t A Interrupt F highest priorit	•			
bit 10-8	000 = Intern Unimplemen FLTA2IP<2:(111 = Intern • • 001 = Intern 000 = Intern	upt source is dis nted: Read as 'n D>: PWM2 Fault upt is priority 7 (1 upt is priority 1	₀ ' t A Interrupt F highest priorit abled	•			
bit 10-8 bit 7	000 = Intern Unimplemen FLTA2IP<2:0 111 = Intern • • 001 = Intern 000 = Intern Unimplemen	upt source is dis nted: Read as f D>: PWM2 Fault upt is priority 7 (upt is priority 1 upt source is dis	^{0'} t A Interrupt F highest priorit abled 0'	ty interrupt)			
bit 10-8 bit 7	000 = Intern Unimplemen FLTA2IP<2:(111 = Intern • • 001 = Intern 000 = Intern Unimplemen PWM2IP<2:(upt source is dis nted: Read as ' D>: PWM2 Fault upt is priority 7 (upt is priority 1 upt source is dis nted: Read as '	^{0'} t A Interrupt F highest priorit abled ^{0'} rupt Priority b	ty interrupt)			
bit 10-8 bit 7	000 = Intern Unimplemen FLTA2IP<2:(111 = Intern • • 001 = Intern 000 = Intern Unimplemen PWM2IP<2:(upt source is dis nted: Read as ' D>: PWM2 Fault upt is priority 7 (1) upt is priority 1 upt source is dis nted: Read as ' D>: PWM2 Inter	^{0'} t A Interrupt F highest priorit abled ^{0'} rupt Priority b	ty interrupt)			
	000 = Intern Unimplemen FLTA2IP<2:(111 = Intern • • 001 = Intern 000 = Intern Unimplemen PWM2IP<2:(upt source is dis nted: Read as ' D>: PWM2 Fault upt is priority 7 (1) upt is priority 1 upt source is dis nted: Read as ' D>: PWM2 Inter	^{0'} t A Interrupt F highest priorit abled ^{0'} rupt Priority b	ty interrupt)			
bit 10-8 bit 7	000 = Intern Unimplemen FLTA2IP<2:(111 = Intern 001 = Intern 000 = Intern Unimplemen PWM2IP<2:(111 = Intern	upt source is dis nted: Read as ' D>: PWM2 Fault upt is priority 7 (upt is priority 1 upt source is dis nted: Read as ' D>: PWM2 Inter upt is priority 7 (^{0'} t A Interrupt F highest priorit abled ^{0'} rupt Priority b	ty interrupt)			
bit 10-8 bit 7	000 = Intern Unimplemen FLTA2IP<2:(111 = Intern 001 = Intern Unimplemen PWM2IP<2:(111 = Intern 001 = Intern	upt source is dis nted: Read as ' D>: PWM2 Fault upt is priority 7 (1) upt is priority 1 upt source is dis nted: Read as ' D>: PWM2 Inter	^{0'} t A Interrupt F highest priorit abled ^{0'} rupt Priority b highest priorit	ty interrupt)			

© 2008 Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
_		DAC1LIP<2:0>(1)		D	AC1RIP<2:0>(1)	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_		_	_	_	_	_	_	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared x = Bit is unknown			
bit 15 bit 14-12	DAC1LIP<2 111 = Interr	ented: Read as ' 2:0>: DAC Left C rupt is priority 7 (hannel Inter		bit ⁽¹⁾			
		upt is priority 1 upt source is dis	abled					
bit 11	Unimpleme	ented: Read as '	0'					
bit 10-8		2:0>: DAC Right rupt is priority 7 (s bit ⁽¹⁾			

- ----

bit 7-0 Unimplemented: Read as '0'

Note 1: Interrupts disabled on devices without DAC modules.

001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 6-32: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
	_	_		ILR<3:0>				
bit 15							bit 8	
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
_				VECNUM<6:0	>			
bit 7							bit C	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-12	Unimplemen	ted: Read as '	0'					
bit 11-8	ILR: New CP	U Interrupt Pric	ority Level bits	6				
	1111 = CPU	Interrupt Priorit	y Level is 15					
	•							
	•							
	0001 = CPU	Interrupt Priorit	v Level is 1					
		Interrupt Priorit						
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-0	VECNUM: Ve	ector Number o	f Pending Inte	errupt bits				
	0111111 = lr	nterrupt Vector	pending is nu	mber 135				
	•							
	•							
	• 000001 = Ir	nterrupt Vector	nendina is ni	umber 9				
		nterrupt Vector						

0000000 = Interrupt Vector pending is number 8

© 2008 Microchip Technology Inc.

6.4 Interrupt Setup Procedures

6.4.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

6.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

6.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

6.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the ${\tt POP}$ instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

7.0 DIRECT MEMORY ACCESS (DMA)

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04. and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", "Section 22. Direct Memory Access (DMA)" (DS70182), which is available from the Microchip website (www.microchip.com).

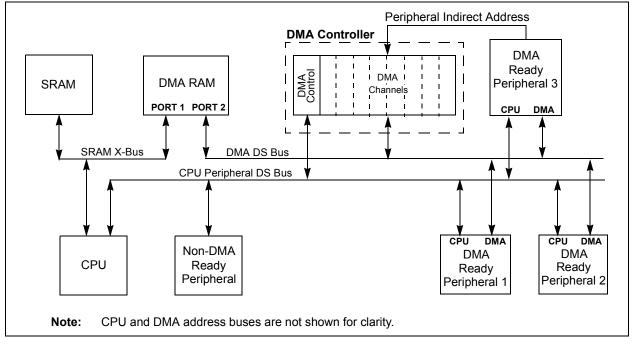
Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 peripherals that can utilize DMA are listed in Table 7-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read From Peripheral	DMAxPAD Register Values to Write to Peripheral
INT0 – External Interrupt 0	0000000	—	_
IC1 – Input Capture 1	0000001	0x0140 (IC1BUF)	—
OC1 – Output Compare 1 Data	0000010	—	0x0182 (OC1R)
OC1 – Output Compare 1 Secondary Data	0000010	—	0x0180 (OC1RS)
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	—
OC2 – Output Compare 2 Data	0000110	—	0x0188 (OC2R)
OC2 – Output Compare 2 Secondary Data	0000110	—	0x0186 (OC2RS)
TMR2 – Timer2	0000111	—	—
TMR3 – Timer3	0001000	—	—
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	0001100	—	0x0224 (U1TXREG)
ADC1 – ADC1 convert done	0001101	0x0300 (ADC1BUF0)	—
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	_
UART2TX – UART2 Transmitter	0011111	—	0x0234 (U2TXREG)
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	_
PMP - Master Data Transfer	0101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)
ECAN1 – TX Data Request	1000110	—	0x0442 (C1TXD)
DAC1 - Right Data Output	1001110	—	0x3F6 (DAC1RDAT)
DAC2 - Left Data Output	1001111		0x03F8 (DAC1LDAT)

TABLE 7-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

The DMA controller features eight identical data transfer channels.


Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Eight DMA channels
- Register Indirect With Post-increment Addressing mode
- Register Indirect Without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- · Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 7-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

7.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels. DMACS0 contains the DMA RAM and SFR write collision flags, XWCOLx and PWCOLx, respectively. DMACS1 indicates DMA channel and Ping-Pong mode status.

The DMAxCON, DMAxREQ, DMAxPAD and DMAxCNT are all conventional read/write registers. Reads of DMAxSTA or DMAxSTB reads the contents of the DMA RAM Address register. Writes to DMAxSTA or DMAxSTB write to the registers. This allows the user to determine the DMA buffer pointer value (address) at any time.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
					0-0	0-0	0-0		
CHEN	SIZE	DIR	HALF	NULLW	_		— hit		
bit 15							bit		
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
	—	AMOD	E<1:0>	—	—	MODE	<1:0>		
bit 7							bit		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown		
bit 15	CHEN: Char	nel Enable bit							
	1 = Channel	enabled							
	0 = Channel	disabled							
bit 14	SIZE: Data T	ransfer Size bit	İ						
	1 = Byte								
	0 = Word								
bit 13	DIR : Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address								
				to peripheral add					
bit 12				errupt Select bit					
				ipt when half of t		een moved			
			•	pt when all of th					
bit 11	NULLW: Nul	I Data Peripher	al Write Mode	e Select bit					
	1 = Null data	write to periph	eral in additio	n to DMA RAM	write (DIR bit i	must also be cle	ar)		
	0 = Normal c	operation							
bit 10-6	Unimplemer	nted: Read as '	0'						
bit 5-4				Mode Select bits					
		•	•	ct Addressing mo	ode)				
		eral Indirect Add r Indirect witho							
		r Indirect with F							
bit 3-2	•	nted: Read as '							
bit 1-0	-	: DMA Channe		ode Select bits					
				ed (one block tra	nsfer from/to e	each DMA RAM	buffer)		
	10 = Continu	ious, Ping-Pong	g modes enab	oled			,		
		iot, Ping-Pong i ious, Ping-Pong							

DECISTED 7 4 CONTROL DECISTED

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

		-		-						
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
FORCE ⁽¹⁾	—	—	_	—	—	_				
bit 15	15				·		bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
	IRQSEL6<6:0> ⁽²⁾									
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is un			x = Bit is unkr	iown				
bit 15	1 = Force a s	e DMA Transfe ngle DMA tran : DMA transfer	sfer (Manual ı							
bit 14-7	Unimplemen	ted: Read as '	0'							
bit 6-0	IRQSEL<6:0>	. DMA Periphe	eral IRQ Num	ber Select bits	(2)					
	0000000-111	1111 = DMAII	RQ0-DMAIRG	2127 selected t	to be Channel D	MAREQ				

REGISTER 7-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

- Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.
 - 2: Refer to Table 6-1 for a complete listing of IRQ numbers for all interrupt sources.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
R/W-U	R/W-U	R/W-0			R/W-0	R/W-U	R/W-0	
			STA	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STA	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is		'1' = Bit is set	t '0' = Bit is clear		ared	x = Bit is unkr	nown	

REGISTER 7-3: DMAxSTA: DMA CHANNEL x RAM START ADDRESS REGISTER A⁽¹⁾

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STA<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 7-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS REGISTER B⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STB	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STE	3<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
-								

bit 15-0 **STB<15:0>:** Secondary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STB<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		PAD	<15:8>				
						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		PAD)<7:0>				
						bit 0	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1':		'1' = Bit is set		ared	x = Bit is unknown		
	R/W-0	R/W-0 R/W-0 bit W = Writable	PAD R/W-0 R/W-0 R/W-0 PAI bit W = Writable bit	PAD<15:8> R/W-0 R/W-0 R/W-0 PAD<7:0> bit W = Writable bit U = Unimpler	PAD<15:8> R/W-0 R/W-0 R/W-0 R/W-0 PAD<7:0> bit W = Writable bit U = Unimplemented bit, read	PAD<15:8> R/W-0 R/W-0 R/W-0 R/W-0 PAD<7:0> bit W = Writable bit U = Unimplemented bit, read as '0'	

REGISTER 7-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 7-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	_	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	CNT<7:0> ⁽²⁾									
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
 - 2: Number of DMA transfers = CNT<9:0> + 1.

REGISTER 7-	-7: DMAC	S0: DMA CO	NTROLLER	STATUS RE	GISTER 0						
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0				
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0				
bit 15							bit 8				
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0				
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOLO				
bit 7	XWOOLU	XWOOLD	XWOOL4	XWOOLD	XWOOLZ	XWOOLI	bit				
Legend:											
-	L:4		L:4		nented bit ree						
R = Readable I		W = Writable		-	nented bit, rea						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	1 = Write colli	nannel 7 Periph ision detected collision detecte		llision Flag bit							
bit 14	PWCOL6: Ch 1 = Write colli	nannel 6 Periph ision detected	ieral Write Col	llision Flag bit							
bit 13		collision detecte nannel 5 Periph		llision Elag hit							
DIL 15		ision detected		ilision riag bit							
		collision detected	ed								
bit 12	PWCOL4: Channel 4 Peripheral Write Collision Flag bit										
	1 = Write collision detected										
		collision detected	ed								
bit 11	PWCOL3: Channel 3 Peripheral Write Collision Flag bit										
	1 = Write colli	ision detected		0							
		collision detecte									
bit 10	PWCOL2: Channel 2 Peripheral Write Collision Flag bit										
	 1 = Write collision detected 0 = No write collision detected 										
bit 9		nannel 1 Periph		Ilision Elag bit							
bit 9	1 = Write colli	ision detected		ilision riag bit							
bit 8				llision Flag bit							
	PWCOL0: Channel 0 Peripheral Write Collision Flag bit 1 = Write collision detected										
		collision detected	ed								
bit 7	XWCOL7: Channel 7 DMA RAM Write Collision Flag bit										
		ision detected	be								
bit 6	 0 = No write collision detected XWCOL6: Channel 6 DMA RAM Write Collision Flag bit 										
bit o	1 = Write collision detected										
		collision detected	ed								
bit 5	XWCOL5: Ch	nannel 5 DMA I	RAM Write Co	llision Flag bit							
		ision detected		- 5 - 64							
		collision detected	ed								
bit 4	XWCOL4: Ch	nannel 4 DMA F	RAM Write Co	llision Flag bit							
	1 = Write colli	ision detected		-							

REGISTER 7-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

REGISTER 7-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1				
_	LSTCH<3:0>										
bit 15							bit				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15-12	Unimplemen	ted: Read as '	0'								
bit 11-8	•	: Last DMA Ch		oits							
	1111 = No DI	MA transfer ha	s occurred sin	ce system Res	et						
	1110-1000 =										
		lata transfer wa	•								
	0110 = Last data transfer was by DMA Channel 6										
	0101 = Last data transfer was by DMA Channel 5 0100 = Last data transfer was by DMA Channel 4										
	0011 = Last data transfer was by DMA Channel 3										
	0010 = Last data transfer was by DMA Channel 2										
	0001 = Last data transfer was by DMA Channel 1 0000 = Last data transfer was by DMA Channel 0										
bit 7	PPST7: Channel 7 Ping-Pong Mode Status Flag bit										
	1 = DMA7STI	B register select A register select	ted								
bit 6		-		s Flag bit							
		PPST6: Channel 6 Ping-Pong Mode Status Flag bit _ = DMA6STB register selected									
	0 = DMA6STA register selected										
bit 5	PPST5: Char	nel 5 Ping-Por	ng Mode Statu	s Flag bit							
	1 = DMA5STI	1 = DMA5STB register selected									
	0 = DMA5STA	A register selec	ted								
bit 4	PPST4: Channel 4 Ping-Pong Mode Status Flag bit										
		B register seled A register seled									
bit 3	PPST3: Channel 3 Ping-Pong Mode Status Flag bit										
		B register select A register select									
bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit										
	1 = DMA2STI	B register select A register select	ted	Ū							
bit 1		inel 1 Ping-Por		s Flag bit							
-	1 = DMA1STI	B register select A register select	cted	- 0							
bit 0		inel 0 Ping-Por		s Flao bit							
		B register selec	-								

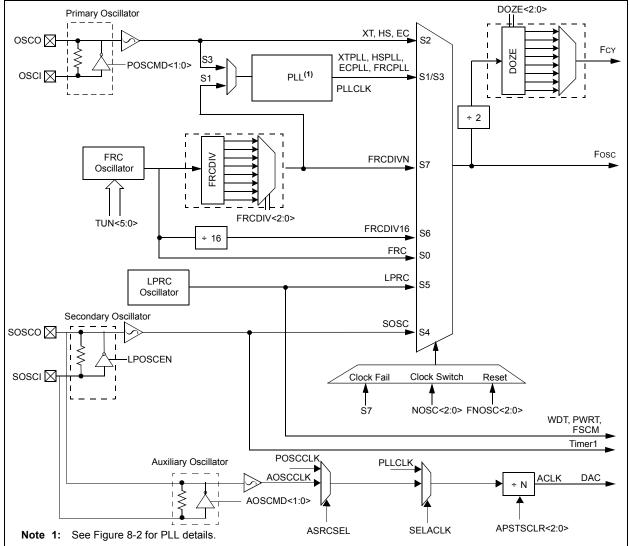
REGISTER 7-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD)R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		t	U = Unimplemented bit, read as '0'				
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is un		x = Bit is unkr	nown

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

NOTES:

8.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04. and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", "Section 7. Oscillator" (DS70186), which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 oscillator system provides:

External and internal oscillator options as clock sources

- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.
- An auxiliary crystal oscillator for audio DAC
- A simplified diagram of the oscillator system is shown in Figure 8-1.

8.1 CPU Clocking System

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- · Low-Power RC (LPRC) Oscillator
- · FRC Oscillator with postscaler

8.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- Crystal (XT): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- High-Speed Crystal (HS): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- External Clock (EC): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The Low-Power RC (LPRC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip PLL to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 8.1.4 "PLL Configuration"**.

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 27.1 "Configuration Bits" for further details.) The Initial Oscillator Selection Configuration bits. FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits. POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) Fosc is divided by 2 to generate the device instruction clock (FCY). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

8.1.3 AUXILIARY OSCILLATOR

The Auxiliary Oscillator (AOSC) can be used for peripheral that needs to operate at a frequency unrelated to the system clock such as DAC.

The Auxiliary Oscillator can use one of the following as its clock source:

Crystal (XT): Crystal and ceramic resonators in the range of 3 Mhz to 10 Mhz. The crystal is connected to the SOCI and SOSCO pins.

High-Speed Crystal (HS): Crystals in the range of 10 to 40 Hz. The crystal is connected to the SOSCI and SOSCO pins.

External Clock (EC): External clock signal up to 64 Mhz. The external clock signal is directly applied to SOSCI pin.

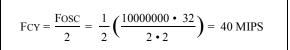
8.1.4 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2.

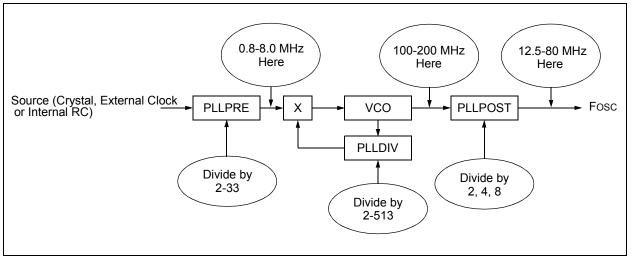
The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M,' by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2.' This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:


EQUATION 8-2: Fosc CALCULATION

$$FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$$


For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL.

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 8-3: XT WITH PLL MODE EXAMPLE

FIGURE 8-2: dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/ X04 PLL BLOCK DIAGRAM

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	XX	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y			
_	COSC<2:0> — NOSC<2:0>									
bit 15							bit 8			
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0			
CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN			
bit 7	Inclosin	Look		0.		LI OCOLIN	bit C			
Legend:		y = Value set	from Configu	ration bits on P	OR					
R = Readable	bit	W = Writable			mented bit, rea	id as '0'				
-n = Value at F	POR	'1' = Bit is set	:	'0' = Bit is cle		x = Bit is unkn	own			
bit 15	Unimplomon	ted: Read as '	0'							
bit 14-12	-			h bits (read-only	A					
	010 = Primary 011 = Primary 100 = Second 101 = Low-Po 110 = Fast R	C oscillator (FF y oscillator (XT y oscillator (XT dary oscillator ower RC oscillator C oscillator (FF C oscillator (FF	, HS, EC) , HS, EC) wit (SOSC) ator (LPRC) RC) with Divid	de-by-16						
bit 11		ted: Read as '		5						
bit 10-8	NOSC<2:0>: New Oscillator Selection bits									
	001 = Fast R 010 = Primar 011 = Primar 100 = Second 101 = Low-Pd 110 = Fast R	C oscillator (FF C oscillator (FF y oscillator (XT y oscillator (XT dary oscillator ower RC oscillator C oscillator (FF C oscillator (FF	RC) with PLL , HS, EC) , HS, EC) wit (SOSC) ator (LPRC) RC) with Divic	h PLL de-by-16						
bit 7	CLKLOCK: Clock Lock Enable bit <u>If clock switching is enabled and FSCM is disabled, (FOSC<fcksm> = 0b01)</fcksm></u> 1 = Clock switching is disabled, system clock source is locked 0 = Clock switching is enabled, system clock source and he medified by clock switching									
bit 6	IOLOCK: Per 1 = Peripheri	 0 = Clock switching is enabled, system clock source can be modified by clock switching IOLOCK: Peripheral Pin Select Lock bit 1 = Peripherial pin select is locked, write to peripheral pin select registers not allowed 0 = Peripherial pin select is not locked, write to peripheral pin select registers allowed 								
bit 5		ock Status bit								
				start-up timer is t-up timer is in _l		L is disabled				
bit 4	Unimplemen	ted: Read as '	0'							
bit 3	CF: Clock Fai	il Detect bit (re	ad/clear by a	pplication)						
	1 = FSCM has									
		as detected clo as not detected								

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0				
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		RCDIV<2:0>					
bit 15				· ·			bit 8				
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	DST<1:0>	_			PLLPRE<4:0>						
bit 7							bit				
			(
Legend: R = Readable	- h:t	-	-	ration bits on PC		aa (0)					
		W = Writable		U = Unimplem							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own				
bit 15	ROI: Recove	er on Interrupt bi	t								
	1 = Interrup		ZEN bit and	the processor clo FN bit	ock/peripheral	clock ratio is se	et to 1:1				
bit 14-12	•	: Processor Cloc									
51(1112	000 = Fcy/1										
	001 = FCY/2										
	010 = FCY/4										
	011 = FCY/8	. ,									
		100 = Fcy/16 101 = Fcy/32									
		101 = FCY/32 110 = FCY/64									
		111 = FCY/128									
bit 11	DOZEN: DOZE Mode Enable bit ⁽¹⁾										
		2:0> field specifi sor clock/periphe		between the perip o forced to 1:1	oheral clocks a	nd the process	or clocks				
bit 10-8	FRCDIV<2:0	0>: Internal Fast	RC Oscillato	or Postscaler bits							
		divide by 1 (defa	ult)								
	001 = FRC divide by 2										
	010 = FRC divide by 4										
		011 = FRC divide by 8 100 = FRC divide by 16									
		100 = FRC divide by 10 101 = FRC divide by 32									
	110 = FRC divide by 64										
	111 = FRC (divide by 256									
bit 7-6	PLLPOST<	1:0>: PLL VCO (Output Divide	er Select bits (als	o denoted as '	N2', PLL posts	caler)				
		00 = Output/2									
	01 = Output/4 (default)										
	10 = Reserv										
hit E	11 = Output		۰ ۲								
bit 5 bit 4-0	-	nted: Read as '		it Dividor bito (al	a denoted as	N1' DLL proof	alar)				
511 4-0	00000 = Inp	out/2 (default)		it Divider bits (als	so denoted as	NT, FLL plese	alei)				
	00001 = Inp	0ut/3									
	•										
	•										
	•										
	11111 = Inp	out/33									

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

REGISTER 8-3	: PLLF	BD: PLL FEE	DBACK DI	ISOR REGIS	TER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾
_	_	—		—	—	_	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLC	01V<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

bit 8-0

PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier) 000000000 = 2 000000001 = 3 000000010 = 4

• • 000110000 = 50 (default) • •

111111111 **= 513**

REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	_	_	_	_	_	_	_				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—			TUN	<5:0>						
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle			k = Bit is unknown				
bit 15-6	Unimplemer	nted: Read as '	0'								
bit 5-0	TUN<5:0>: F	RC Oscillator 1	uning bits								
		enter frequency									
	011110 = C e	enter frequency	+11.25% (8.2	0 MHz)							
	•	•									
	•										
	• 000001 = Center frequency +0.375% (7.40 MHz)										
		enter frequency									
	111111 = C e	enter frequency	-0.375% (7.34	45 MHz)							
	•										
	•										
	•	ntor froquers:	11 6060/ /01								
		enter frequency enter frequency									
	T00000 - CE	enter nequency	-12% (0.49 W	ii iz)							

REGISTER 8-5: ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	SELACLK	AOSCMD<1:0>		A	APSTSCLR<2:0>				
bit 15							bit			
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
ASRCSEL	—	—		_	—	—	— h.:4			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplei	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15-14	Unimplemen	ted: Read as ')'							
bit 13	SELACLK: S	SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider								
	 1 = Auxiliary Oscillators provides the source clock for Auxiliary Clock Divider 0 = FRC with PLL provides the source clock for Auxiliary Clock Divider 									
		•			Clock Divider					
bit 12-11		0>: Auxiliary Os		9						
	11 = EC External Clock Mode Select									
	10 = XT Oscillator Mode Select									
	01 = HS Oscillator Mode Select 00 = Auxiliary Oscillator Disabled (default)									
bit 10-8		2:0>: Auxiliary								
	111 = divided			Divider						
	110 = divided	,								
		101 = divided by 2 101 = divided by 4								
	100 = divided by 8									
	111 = divided by 16									
	010 = divided by 32									
	011 = divided		t)							
bit 7	000 = divided by 256 (default) ASRCSEL: Select Reference Clock Source for Auxiliary Clock									
~		Oscillator is the			0.001					
	•	Oscillator is the								
bit 6-0	Unimplemen	ted: Read as 'd)'							
	-									

8.2 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 27.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

8.2.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

8.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure. NOTES:

9.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the "dsPIC33F Family Reference Manual",
	"Section 9. Watchdog Timer and Power
	Savings Modes" (DS70196), which is
	available from the Microchip website
	(www.microchip.com).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices can manage power consumption in four ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- · Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE MODE; Put the device into IDLE mode

9.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

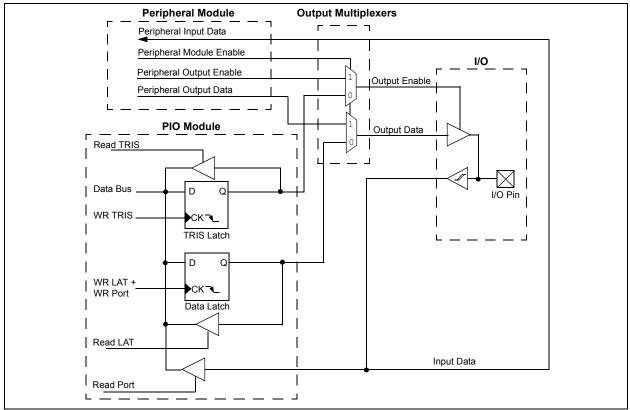
10.0 I/O PORTS

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the "dsPIC33F Family
	Reference Manual", "Section 10. I/O
	Ports" (DS70193), which is available
	from the Microchip website
	(www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output. The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital-only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Some I/O pins may have internal analog functionality that will not be shown on the device pin diagram. These pins must be treated as analog pins. Table 10-1 lists all available pins and their functionality.

I/O Pin	Digital Only/5V Tolerant	I/O Pin	Digital Only/5V Tolerant
RA0	No	RB9	Yes
RA1	No	RB10	Yes
RA2	No	RB11	Yes
RA3	No	RB12	No
RA4	No	RB13	No
RA7	Yes	RB14	No
RA8	Yes	RB15	No
RA9	Yes	RC0	No
RA10	Yes	RC1	No
RB0	No	RC2	No
RB1	No	RC3	Yes
RB2	No	RC4	Yes
RB3	No	RC5	Yes
RB4	No	RC6	Yes
RB5	Yes	RC7	Yes
RB6	Yes	RC8	Yes
RB7	Yes	RC9	Yes
RB8	Yes		· · · ·

TABLE 10-1: AVAILABLE I/O PINS AND THEIR FUNCTIONALITY

10.2 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the analog-to-digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 10-1.

10.3 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/ X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-ofstates even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	WO, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction

10.4 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

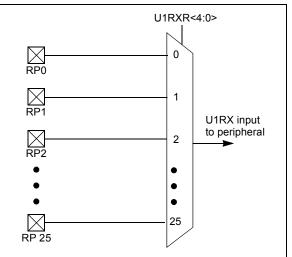
10.4.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


10.4.2.1 Input Mapping

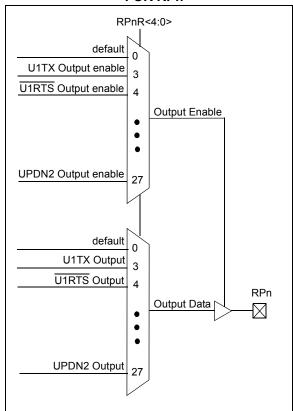
The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-20). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

REMAPPABLE MUX INPUT FOR U1RX

Input Name	Function Name	Register	Configuration Bits	
External Interrupt 1	INT1	RPINR0	INT1R<4:0>	
External Interrupt 2	INT2	RPINR1	INT2R<4:0>	
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>	
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>	
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>	
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>	
Input Capture 1	IC1	RPINR7	IC1R<4:0>	
Input Capture 2	IC2	RPINR7	IC2R<4:0>	
Input Capture 7	IC7	RPINR10	IC7R<4:0>	
Input Capture 8	IC8	RPINR10	IC8R<4:0>	
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>	
PWM1 Fault	FLTA1	RPINR12	FLTA1R<4:0>	
PWM2 Fault	FLTA2	RPINR13	FLTA2R<4:0>	
QEI1 Phase A	QEA1	RPINR14	QEAIR<4:0>	
QEI1 Phase B	QEB1	RPINR14	QEBIR<4:0>	
QEI1 Index	INDX1	RPINR15	INDXIR<4:0>	
QEI2 Phase A	QEA2	RPINR16	QEA2R<4:0>	
QEI2Phase B	QEB2	RPINR16	QEB2R<4:0>	
QEI2 Index	INDX2	RPINR17	INDX2R<4:0>	
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>	
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>	
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>	
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>	
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>	
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>	
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>	
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>	
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>	
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>	
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>	

TABLE 10-2: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾


Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

10.4.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-21 through Register 10-33). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-3 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3: MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn

TABLE 10-3: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
C10UT	00001	RPn tied to Comparator1 Output
C2OUT	00010	RPn tied to Comparator2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
U2TX	00101	RPn tied to UART2 Transmit
U2RTS	00110	RPn tied to UART2 Ready To Send
SDO1	00111	RPn tied to SPI1 Data Output
SCK1OUT	01000	RPn tied to SPI1 Clock Output
SS10UT	01001	RPn tied to SPI1 Slave Select Output
SDO2	01010	RPn tied to SPI2 Data Output
SCK2OUT	01011	RPn tied to SPI2 Clock Output
SS2OUT	01100	RPn tied to SPI2 Slave Select Output
C1TX	10000	RPn tied to ECAN1 Transmit
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
OC3	10100	RPn tied to Output Compare 3
OC4	10101	RPn tied to Output Compare 4
UPDN1	11010	RPn tied to QEI1 direction (UPDN) status
UPDN2	11011	RPn tied to QEI2 direction (UPDN) status

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:						
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)						
	See MPLAB IDE Help for more information.						

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<IOL1WAY>) configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

10.5 Peripheral Pin Select Registers

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 family of devices implement 33 registers for remappable peripheral configuration:

- 20 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR21, PRINR23, and PRINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note:	Input and Output Register values can only								
	be	changed	the	IOLOCK		bit			
	(OSCCON<6>)			set	to	'0'.	See		
	Section 10.4.3.1 "Control Register								
	Loc	k" for a spec	cific	comm	and	seque	nce.		

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	-			INT1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-13	Unimplemented: Read as '0'
bit 12-8	INT1R<4:0>: Assign External Inte

bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin
	11111 = Input tied to Vss
	11001 = Input tied to RP25
	•
	•
	•
	00001 = Input tied to RP1
	00000 = Input tied to RP0
bit 7-0	Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_	_	_	_	_	_	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	—			INT2R<4:0>			
bit 7		•					bit 0	
Legend:								
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-5	Unimplemen	ted: Read as ')'					

bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25

> • 00001 = Input tied to RP1 00000 = Input tied to RP0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	_			T3CKR<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	_			T2CKR<4:0>	•	
bit 7							bit C
Logondu							
Legend: R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is se	t	•	' = Bit is cleared		nown
bit 12-8	T3CKR<4:0	nted: Read as <: Assign Time ut tied to Vss		ock (T3CK) to t	he correspondi	ng RPn pin	
bit 12-8	T3CKR<4:0 11111 = Inp	>: Assign Time	r3 External Clo	ock (T3CK) to t	he correspondi	ng RPn pin	
bit 12-8	T3CKR<4:0 11111 = Inp	Assign Time ut tied to Vss	r3 External Clo	ock (T3CK) to t	he correspondi	ng RPn pin	
bit 12-8	T3CKR<4:0: 11111 = Inp 11001 = Inp	>: Assign Time ut tied to Vss ut tied to RP25 ut tied to RP1	r3 External Clo	ock (T3CK) to t	he correspondi	ng RPn pin	
	T3CKR<4:0 11111 = Inp 11001 = Inp	Assign Time ut tied to Vss ut tied to RP25	r3 External Clo	ock (T3CK) to t	he correspondi	ng RPn pin	
bit 7-5	T3CKR<4:0: 11111 = Inp 11001 = Inp	Assign Time ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0 nted: Read as	r3 External Clo '0' r2 External Clo		he correspondi he correspondi		
bit 12-8 bit 7-5 bit 4-0	T3CKR<4:0: 11111 = Inp 11001 = Inp	Assign Time ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0 nted: Read as >: Assign Time ut tied to Vss	r3 External Clo '0' r2 External Clo				

00001 = Input tied to RP1 00000 = Input tied to RP0

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

REGISTER	10-4: RPIN	R4: PERIPHEI	RAL PIN SE	LECT INPUT	REGISTER	4				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_		_			T5CKR<4:0	>				
bit 15		·					bit			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—	—			T4CKR<4:0	>				
bit 7							bit			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
	• •	out tied to RP25								
		out tied to RP1 out tied to RP0								
bit 7-5	Unimpleme	nted: Read as ')'							
bit 4-0	T4CKR<4:0	T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to the corresponding RPn pin								
		out tied to Vss out tied to RP25								
	•									
	•									
		out tied to RP1 out tied to RP0								

REGISTER 10-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

11.0	11.0	11.0									
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1 IC2R<4:0>	R/W-1	R/W-1				
 bit 15		_			IC2R<4:0>		bit 8				
DIL 15							DILC				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_		_			IC1R<4:0>						
bit 7		·					bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unknown					
bit 12-8	11111 = In p	Assign Input C out tied to Vss out tied to RP25	,								
		00001 = Input tied to RP1 00000 = Input tied to RP0									
bit 7-5	Unimpleme	nted: Read as	ʻ0 '								
bit 4-0	11111 = In p	Assign Input C out tied to Vss put tied to RP2	,	to the correspo	onding RPn pin						

00001 = Input tied to RP1 00000 = Input tied to RP0

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	—	_			IC8R<4:0>			
bit 15							bit	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—		_			IC7R<4:0>			
bit 7							bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value a	t POR	'1' = Bit is se	t	•			unknown	
bit 12-8	11111 = Inpu 11001 = Inpu • • • • • •	Assign Input Ca ut tied to Vss ut tied to RP25 ut tied to RP1		to the correspo	onaing pin KPn	i pin		
bit 7-5		ut tied to RP0 nted: Read as '	0'					
bit 4-0	IC7R<4:0>: /	Assign Input Ca ut tied to Vss ut tied to RP25		to the correspo	onding pin RPn	pin		

REGISTER 10-6: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTERS 10

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	<u> </u>	—
bit 15				-	•		bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			OCFAR<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at P	POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 15-5 Unimplemented: Read as '0'

bit 4-0 OCFAR<4:0>: Assign Output Compare A (OCFA) to the corresponding RPn pin 11111 = Input tied to Vss

Input tied to VSS
Input tied to RP25
Input tied to RP25

00001 = Input tied to RP1 00000 = Input tied to RP0

00000 = Input tied to RP0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
—	—	—			FLTA1R<4:0>						
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15-5	Unimplemen	ted: Read as '	0'								
bit 4-0	FLTA1R<4:0>	: Assign PWM	1 Fault (FLTA	1) to the corre	sponding RPn p	vin					
	11111 = Inpu										
	11001 = Inpu	t tied to RP25									
	•										
	•										
	•										
	00001 = Input tied to RP1										

REGISTER 10-8: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

REGISTER 10-9: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	—			FLTA2R<4:0>			
bit 7		•					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-5	Unimplemen	ted: Read as ')'					
bit 4-0	FLTA2R<4:0>	: Assign PWM	2 Fault (FLTA	2) to the corre	sponding RPn p	in		
	11111 = I nnu	t tipd to Vee						

11111 = Input tied to Vss 11001 = Input tied to RP25 • •

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0 U-0 U-0 R/W-1 R/W R/W R/W	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
U-0 U-0 U-0 R/W-1 R/W R Readable D< R Readable Dit D Deltation Image: Comparison of the thettee thette	_	—	_			QEB1R<4:0	>	
	bit 15							bit
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-8 QEB1R<4:0>: Assign B (QEB1) to the corresponding pin 11111 = Input tied to VSS 11001 = Input tied to RP25 • • • • • • • • • • • • •	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-8 QEB1R<4:0>: Assign B (QEB1) to the corresponding pin 11111 = Input tied to Vss 11001 = Input tied to RP25	_	—	-			QEA1R<4:0	>	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-8 QEB1R<4:0>: Assign B (QEB1) to the corresponding pin 11111 = Input tied to Vss 11001 = Input tied to RP25 • • 00001 = Input tied to RP1 00000 = Input tied to RP0 bit 7-5 Unimplemented: Read as '0' bit 4-0 QEA1R<4:0>: Assign A(QEA1) to the corresponding pin 11111 = Input tied to Vss 11111 = Input tied to Vss	bit 7							bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-8 QEB1R<4:0>: Assign B (QEB1) to the corresponding pin 11111 = Input tied to Vss 11001 = Input tied to RP25 00001 = Input tied to RP1 00000 = Input tied to RP0 bit 7-5 Unimplemented: Read as '0' bit 4-0 QEA1R<4:0>: Assign A(QEA1) to the corresponding pin								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-8 QEB1R<4:0>: Assign B (QEB1) to the corresponding pin 11111 = Input tied to Vss 11001 = Input tied to RP25	-							
bit 15-13 Unimplemented: Read as '0' bit 12-8 QEB1R<4:0>: Assign B (QEB1) to the corresponding pin 11111 = Input tied to Vss 11001 = Input tied to RP25 • • • 00001 = Input tied to RP1 00000 = Input tied to RP0 bit 7-5 Unimplemented: Read as '0' bit 4-0 QEA1R<4:0>: Assign A(QEA1) to the corresponding pin 11111 = Input tied to Vss	R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
bit 12-8 QEB1R<4:0>: Assign B (QEB1) to the corresponding pin 11111 = Input tied to Vss 11001 = Input tied to RP25	-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unknown	
bit 12-8 QEB1R<4:0>: Assign B (QEB1) to the corresponding pin 11111 = Input tied to Vss 11001 = Input tied to RP25 • • 00001 = Input tied to RP1 00000 = Input tied to RP0 bit 7-5 Unimplemented: Read as '0' bit 4-0 QEA1R<4:0>: Assign A(QEA1) to the corresponding pin 11111 = Input tied to Vss								
<pre>11111 = Input tied to Vss 11001 = Input tied to RP25</pre>	bit 15-13	Unimplemer	nted: Read as	ʻ0 '				
11001 = Input tied to RP25 •	bit 12-8	QEB1R<4:0>	: Assign B (QI	EB1) to the co	prresponding pir	า		
 . /ul>								
 . /ul>		11001 = Inp	ut tied to RP25					
00000 = Input tied to RP0 bit 7-5 Unimplemented: Read as '0' bit 4-0 QEA1R<4:0>: Assign A(QEA1) to the corresponding pin 11111 = Input tied to Vss		•						
00000 = Input tied to RP0 bit 7-5 Unimplemented: Read as '0' bit 4-0 QEA1R<4:0>: Assign A(QEA1) to the corresponding pin 11111 = Input tied to Vss		•						
00000 = Input tied to RP0 bit 7-5 Unimplemented: Read as '0' bit 4-0 QEA1R<4:0>: Assign A(QEA1) to the corresponding pin 11111 = Input tied to Vss		•						
bit 7-5 Unimplemented: Read as '0' bit 4-0 QEA1R<4:0>: Assign A(QEA1) to the corresponding pin 11111 = Input tied to Vss								
bit 4-0 QEA1R<4:0>: Assign A(QEA1) to the corresponding pin 11111 = Input tied to Vss								
11111 = Input tied to Vss		-						
•	bit 4-0		•	A1) to the co	rresponding pin			

11001 = Input tied to RP25
•
•
•
00001 - Insult field to DD1

00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER 10-11: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—		—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			INDX1R<4:0>		
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	Unimplemen	ted: Read as '	כ'				
bit 4-0	INDX1R<4:0>	Assign QEI1	INDEX (IND)	(1) to the corre	sponding RPn p	bin	
	11111 = Inpu	t tied to Vss					

11001 = Input tied to RP25
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 <l

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	_	QEB2R<4:0>							
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	—	—	— QEA2R<4:0>						
bit 7							bit (
Legend:									
R = Readabl	le bit	W = Writable	bit	•	mented bit, rea	ad as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
	11001 = Inpr • •	ut tied to RP25							
		ut tied to RP1 ut tied to RP0							
bit 7-5	Unimplemer	nted: Read as '	0'						
bit 4-0	11111 = Inpr 11001 = Inpr •	>: Assign A(QE ut tied to Vss ut tied to RP25	A2) to the cor	esponding pin	1				
		ut tied to RP1 ut tied to RP0							

REGISTER 10-13: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	INDX2R<4:0>								
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-5	Unimplemen	ted: Read as ') '						
bit 4-0	INDX2R<4:0> 11111 = Inpu	•	INDEX (INDX	(2) to the corre	esponding RPn p	pin			

00000 = Input tied to RP0

```
© 2008 Microchip Technology Inc.
```

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_)>				
oit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	>				
oit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
n = Value a	t POR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is u				nown
	•						
		out tied to RP1 out tied to RP0					
bit 7-5	Unimpleme	nted: Read as '	0'				
bit 4-0	11111 = Inp	>: Assign UART out tied to Vss out tied to RP25	⁻ 1 Receive (U [∕]	1RX) to the co	rresponding R	Pn pin	
	•						
	•	out tied to RP1 out tied to RP0					

REGISTER 10-14: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

REGISTER 10-15: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	_	— U2CTSR<4:0>								
- - - U2CTSR<4:0> bit 15 - - bit - - - - - - - - - - bit - - - - - - - - - - - U2RXR<4:0> - -		bit 8								
11.0	11.0	11.0								
0-0	0-0	<u> </u>	FX/ V V- I	FV/ VV- I			FV/VV-1			
bit 7					021001 4.0	-	bit 0			
							bit 0			
Legend:										
R = Readabl	le bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow						
	11001 = Inpu •	it tied to RP25								
bit 7-5	Unimplemen	ited: Read as '0)'							
bit 4-0	11111 = Inpu	ut tied to Vss	2 Receive (U	2RX) to the co	rresponding R	Pn pin				
	•									
	00001 = Inpu 00000 = Inpu									

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—					SCK1R<4:0	>	
oit 15	L. C.						bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	_	>				
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set	t '0' = Bit is cleared x = Bit is unkr				iown
		out tied to Vss out tied to RP25					
		out tied to RP1 out tied to RP0					
bit 7-5	Unimpleme	ented: Read as '	0'				
bit 4-0	SDI1R<4:0>	• Accian SDI1 F	Data Input (SD	11) to the corre	enonding PDr	nin	

REGISTER 10-16: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

REGISTER 10-17: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0					
	0-0	U-0	U-0	U-0	U-0	U-0
—	_	_	—	—	—	—
						bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	SS1R<4:0>				
						bit 0
oit	W = Writable I	oit	U = Unimpler	nented bit, read	as '0'	
OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
Unimplement	ted: Read as ')'				
SS1R<4:0>: /	Assign SPI1 Sla	ave Select Inp	out (SS1) to the	e corresponding	RPn pin	
	Dit OR Unimplement	Dit W = Writable R OR '1' = Bit is set Unimplemented: Read as '0	- - bit W = Writable bit OR '1' = Bit is set Unimplemented: Read as '0'	— — Dit W = Writable bit U = Unimpler OR '1' = Bit is set '0' = Bit is cle Unimplemented: Read as '0'	— — SS1R<4:0> Dit W = Writable bit U = Unimplemented bit, read OR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' Unimplemented: Read as '0'	— — SS1R<4:0> Dit W = Writable bit U = Unimplemented bit, read as '0' OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr

4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.<

REGISTER 10-18:	RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22
-----------------	---

	U-0 — W = Writable b '1' = Bit is set	R/W-1	R/W-1	SCK2R<4:0 R/W-1 SDI2R<4:0	R/W-1	bit 8 R/W-1 bit 0
_	— W = Writable b					R/W-1
_	— W = Writable b					
_	— W = Writable b					
		it				bit (
		it	II = Unimpler			
		it	II = Unimpler			
		it	II = Unimpler			
	'1' = Bit is set			mented bit, rea	ad as '0'	
			'0' = Bit is cle	ared	x = Bit is unkn	Iown
	tied to Vss tied to RP25					
mplement	ed: Read as '0	,				
11 = Input 001 = Input	tied to Vss tied to RP25	ata Input (SD	012) to the corre	esponding RPr	ı pin	
	000 = Input mplement 2R<4:0>: / 11 = Input 001 = Input	-	 input tied to RP0 mplemented: Read as '0' I2R<4:0>: Assign SPI2 Data Input (SE 11 = Input tied to Vss 101 = Input tied to RP25 input tied to RP1 	000 = Input tied to RP0 mplemented: Read as '0' I2R<4:0>: Assign SPI2 Data Input (SDI2) to the correct 11 = Input tied to Vss 001 = Input tied to RP25 001 = Input tied to RP1	 input tied to RP0 mplemented: Read as '0' i2R<4:0>: Assign SPI2 Data Input (SDI2) to the corresponding RPr i1 = Input tied to Vss i01 = Input tied to RP25 	<pre>public function in the second se</pre>

REGISTER 10-19: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
							<u> </u>
						—	_
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	—	SS2R<4:0>				
bit 7		·					bit C
Legend:							
R = Readable b	adable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Value at PO	OR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is u		x = Bit is unk	nown	

bit 15-5 Unimplemented: Read as '0'

00000 = Input tied to RP0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 ____ _ bit 15 bit 8 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 C1RXR<4:0> ____ bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

REGISTER 10-20: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

bit 15-5 Unimplemented: Read as '0'

Note 1: This register is disabled on devices without ECAN™

REGISTER 10-21: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

Legend: R = Readable		W = Writable b			nented bit, rea		
							Dit t
bit 7							bit C
	_		RP0R<4:0>				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
		_	RP1R<4:0>				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-22: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTERS 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-3 for peripheral function numbers)

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

REGISTER 10-23: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTERS 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_	RP5R<4:0>				
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP4R<4:0>				
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

- bit 12-8 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-3 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-24: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTERS 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP6R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-25: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP9R<4:0>				
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP8R<4:0>				
bit 7		·					bit (
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-26: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTERS 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-3 for peripheral function numbers)

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

REGISTER 10-27: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTERS 6

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		_	RP13R<4:0>					
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_				RP12R<4:0>				
bit 7	·						bit 0	
Legend:								
R = Readable	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at F	t POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow			nown				

- bit 12-8 **RP13R<4:0>:** Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-3 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP12R<4:0>:** Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-28: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTERS 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-29: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTERS 8 ¹ /	REGISTER 10-29:	RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTERS 8⁽¹⁾
--	-----------------	--

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP17R<4:0>	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—			RP16R<4:0>	>	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				nown
bit 15-13	Unimplemen	ted: Read as 'd)'				
bit 12-8	RP17R<4:0>	: Peripheral Ou	tout Function	n is Assigned to	RP17 Output	Pin bits (see Tal	ble 10-3 for

bit 12-8	RP17R<4:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 10-3 for
	peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 10-3 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

) R/W-0
bit 8
) R/W-0
bit 0
unknown
e Table 10-3 for
-

REGISTER 10-30: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTERS 9⁽¹⁾

bit 7-5Unimplemented: Read as '0'bit 4-0RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 10-3 for

peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 10-31: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTERS 10⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	—			RP21R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		—	RP20R<4:0>				
bit 7						bit (
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	id as '0'		
-n = Value at POR '1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 10-3 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 10-3 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 10-32: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTERS 11⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP23R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_			RP22R<4:0	>	
bit 7							bit 0
1							
Legend:							
R = Readable bit W = Writable I		bit	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 10-3 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	—			RP25R<4:0	>	
bit 15		· ·					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP24R<4:0	>	
bit 7							bit (
Legend:							
R = Readable	ble bit W = Writable bit		oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	e at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 10-33: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTERS 12⁽¹⁾

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP25R<4:0>:** Peripheral Output Function is Assigned to RP25 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP24R<4:0>:** Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 10-3 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

11.0 TIMER1

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the "dsPIC33F Family Reference Manual",
	"Section 11. Timers" (DS70205), which is
	available from the Microchip website
	(www.microchip.com).

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

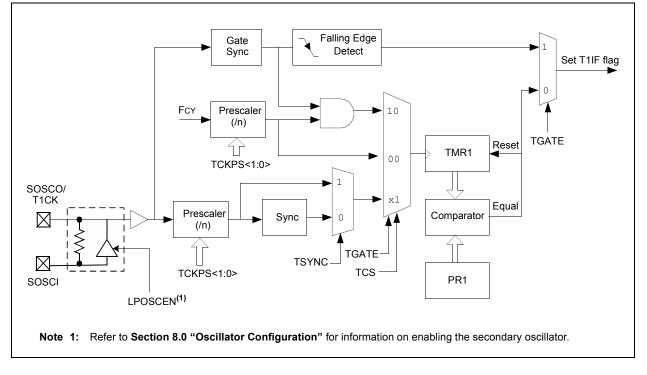
- Can be operated from the low power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

The unique features of Timer1 allow it to be used for Real Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 11-1. The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 11-1.

TABLE 11-1: T	IMER MODE SETTINGS	3
---------------	--------------------	---

Mode	TCS	TGATE	TSYNC
Timer	0	0	Х
Gated timer	0	1	Х
Synchronous counter	1	х	1
Asynchronous counter	1	Х	0

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTER	11-1: T1CO	N: TIMER1 C	ONTROL R	EGISTER						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	—	TSIDL	_	—	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
	TGATE	TCKPS	S<1:0>		TSYNC	TCS				
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	TON: Timer1	On bit								
	1 = Starts 16-									
	0 = Stops 16-									
bit 14	-	ted: Read as '								
bit 13		TSIDL: Stop in Idle Mode bit								
		ue module ope module operat		levice enters Id	lle mode					
bit 12-7		ted: Read as '		ue						
bit 6	-			n Enable bit						
	TGATE: Timer1 Gated Time Accumulation Enable bit <u>When T1CS = 1:</u>									
	This bit is igno									
	When T1CS =									
		e accumulation accumulation								
bit 5-4		Timer1 Input (o Soloct hite						
DIL 3-4	11 = 1:256									
	10 = 1:64									
	01 = 1:8									
	00 = 1:1									
bit 3	-	ted: Read as '								
bit 2		TSYNC: Timer1 External Clock Input Synchronization Select bit								
	<u>When TCS = 1:</u> 1 = Synchronize external clock input									
		0 = Do not synchronize external clock input								
	When TCS =									
	This bit is igno									
bit 1		Clock Source S								
	1 = External o 0 = Internal cl	clock from pin ∃ lock (Fcy)	TCK (on the	rising edge)						
bit 0		ted: Read as '	0'							
			-							

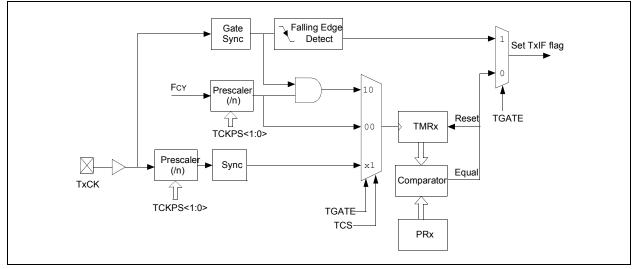
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

12.0 TIMER2/3 AND TIMER4/5 FEATURE

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the "dsPIC33F Family Reference Manual",
	"Section 11. Timers" (DS70205), which is
	available from the Microchip website
	(www.microchip.com).

Timer2 and Timer4 are Type B timers with the following specific features:

• A Type B timer can be concatenated with a Type C timer to form a 32-bit timer


• The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

A block diagram of the Type B timer is shown in Figure 12-1.

Timer3 and Timer5 are Type C timers with the following specific features:

- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an A/D conversion.
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler

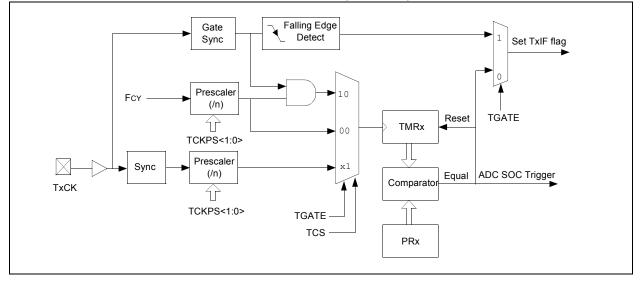

A block diagram of the Type C timer is shown in Figure 12-2.

FIGURE 12-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 or 4)

FIGURE 12-2:

TYPE C TIMER BLOCK DIAGRAM (x = 3 or 5)

The Timer2/3 and Timer4/5 modules can operate in one of the following modes:

- · Timer mode
- · Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 12-1.

TABLE 12-1 :	TIMER MODE SETTINGS
---------------------	---------------------

Mode	TCS	TGATE
Timer	0	0
Gated timer	0	1
Synchronous counter	1	Х

12.1 16-bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

Note:	Only Timer2 and Timer3 can trigger a	
	DMA data transfer.	

12.2 32-bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control. Type C timer control register bits are ignored (except TSIDL bit).

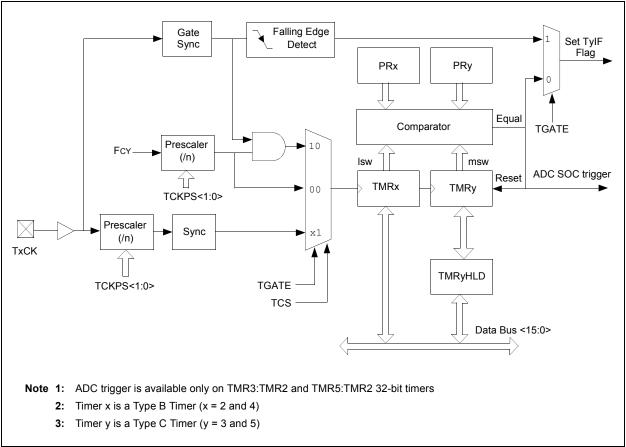
For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Type B and Type C timers that can be combined to form a 32-bit timer are listed in Table 12-2.

TABLE 12-2: 32-BIT TIMER

TYPE B Timer (Isw)	TYPE C Timer (msw)
Timer2	Timer3
Timer4	Timer5


A block diagram representation of the 32-bit timer module is shown in Figure 12-3. The 32-timer module can operate in one of the following modes:


- Timer mode
- Gated Timer mode
- · Synchronous Counter mode

To configure the features of Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- Load the timer period value. PR3 or PR5 contains the most significant word of the value, while PR2 or PR4 contains the least significant word.
- If interrupts are required, set the interrupt enable bits, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0> to set the interrupt priority. While Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the most significant word of the count, while TMR2 or TMR4 contains the least significant word.

REGISTER	12-1: TxCO	N: TIMER CO	NTROL RE	GISTER (x =	2 or 4)							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON	—	TSIDL	_	_	—	—	—					
bit 15						· ·	bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0					
_	TGATE	TCKP		T32 ⁽¹⁾	_	TCS	_					
bit 7		-		-			bit 0					
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'						
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own					
bit 15	TON: Timerx	On bit										
	<u>When T32 = :</u>	1 (in 32-bit Tim	er mode):									
		bit TMRx:TMR										
	=	0 = Stops 32-bit TMRx:TMRy timer pair										
	<u>When T32 = 0 (in 16-bit Timer mode):</u> 1 = Starts 16-bit timer											
	1 = Starts 16-0 = Stops 16-0											
bit 14	-	ited: Read as '	0'									
bit 13	TSIDL: Stop in Idle Mode bit											
	1 = Discontinue timer operation when device enters Idle mode											
		timer operation										
bit 12-7	Unimplemen	ted: Read as '	0'									
bit 6	TGATE: Time	erx Gated Time	Accumulatio	n Enable bit								
	When TCS = 1:											
	This bit is ignored.											
	When TCS = 0:											
	1 = Gated time accumulation enabled 0 = Gated time accumulation disabled											
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Presca	le Select bits								
	TCKPS<1:0>: Timerx Input Clock Prescale Select bits 11 = 1:256 prescale value											
	10 = 1:64 prescale value											
	01 = 1:8 prescale value											
hit 0	00 = 1:1 prescale value T32: 32-bit Timerx Mode Select bit ⁽¹⁾											
bit 3		d TMRy form a										
		d TMRy form a		t timer								
bit 2		ited: Read as '	•									
bit 1	-	Clock Source S										
	1 = External clock from TxCK pin 0 = Internal clock (Fosc/2)											
		()										

REGISTER 12-1: TxCON: TIMER CONTROL REGISTER (x = 2 or 4)

Note 1: In 32-bit mode, the TYCON control bits do not effect 32-bit timer operation.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽²⁾		TSIDL ⁽¹⁾	_	_	_	_					
bit 15		_					bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
	TGATE ⁽²⁾	TCKPS	<1:0> ⁽²⁾	_		TCS ⁽²⁾					
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own				
bit 15	TON: Timery	On hit(2)									
	1 = Starts 16-										
	0 = Stops 16-I										
bit 14	Unimplement	ted: Read as ') '								
bit 13	TSIDL: Stop in Idle Mode bit ⁽¹⁾										
		ue timer operat timer operation		vice enters Idle	mode						
bit 12-7		ted: Read as '		-							
bit 6	-	TGATE: Timerx Gated Time Accumulation Enable bit ⁽²⁾									
	When TCS = 1:										
	This bit is ignored.										
	<u>When TCS = 0:</u> 1 = Gated time accumulation enabled										
	0 = Gated time accumulation disabled										
bit 5-4	TCKPS<1:0>	TCKPS<1:0>: Timerx Input Clock Prescale Select bits ⁽²⁾									
	11 = 1:256 prescale value										
		10 = 1:64 prescale value									
	01 = 1:8 preso 00 = 1:1 preso										
bit 3-2	-	ted: Read as '	o '								
bit 1	-	Clock Source S									
		lock from TxCl									
	0 = Internal cl										

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits have no effect.

© 2008 Microchip Technology Inc.

NOTES:

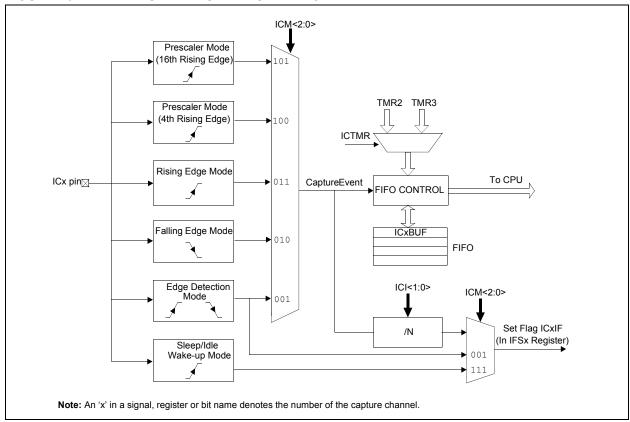
13.0 INPUT CAPTURE

Note: This data sheet summarizes the features dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", "Section 12. Input Capture" (DS70198), which is available from the Microchip website (www.microchip.com).

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices support up to four input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- 1. Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin


- 2. Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of two 16bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00)

FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM

13.1 Input Capture Registers

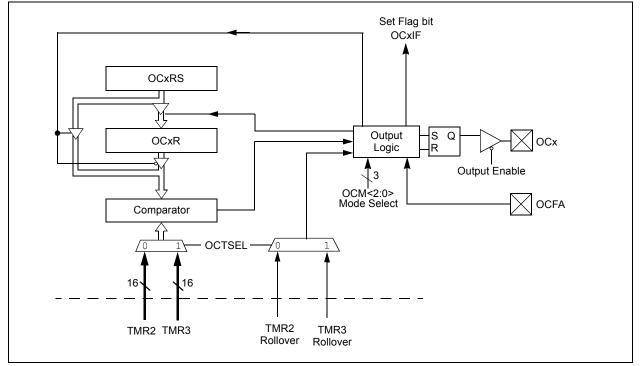
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 or 8)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—		ICSIDL	_	—		—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<1:0>		ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:									
R = Readable bit		W = Writable bit	U = Unimplemented bit	, read as '0'					
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15-14	•	mented: Read as '0'							
bit 13		Input Capture Module Stop in							
	-	capture module halts in CPL							
		t capture module continues to	o operate in CPU Idle mode						
bit 12-8	•	mented: Read as '0'							
bit 7		Input Capture Timer Select b							
		2 contents are captured on c 3 contents are captured on c	1						
bit 6-5	ICI<1:0>	: Select Number of Captures	per Interrupt bits						
	 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event 								
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)								
	 1 = Input capture overflow occurred 0 = No input capture overflow occurred 								
bit 3		Input Capture Buffer Empty S							
	1 = Input		at least one more capture val	ue can be read					
bit 2-0	ICM<2:0	>: Input Capture Mode Select	t bits						
	(F 110 = Ur 101 = Ca 010 = Ca 011 = Ca 010 = Ca 001 = Ca	Rising edge detect only, all ot nused (module disabled) apture mode, every 16th risin apture mode, every 4th rising apture mode, every rising ed apture mode, every falling ed apture mode, every edge (ris	edge ge ing and falling) terrupt generation for this mo	able.)					

14.0 OUTPUT COMPARE

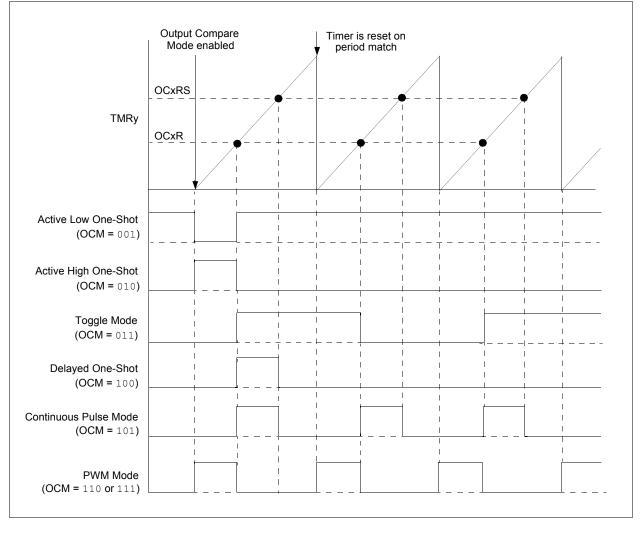

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the "dsPIC33F Family Reference Manual",
	"Section 13. Output Compare" (DS70209),
	which is available from the Microchip web-
	site (www.microchip.com).

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active Low One-Shot mode
- Active High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- · PWM mode without fault protection
- PWM mode with fault protection

14.1 Output Compare Modes


Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output

Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user application must disable the associated timer when writing to the output compare control registers to avoid malfunctions.

TABLE 14-1: OUTPUT COMPARE MODES

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	_
001	Active Low One-Shot	0	OCx Rising edge
010	Active High One-Shot	1	OCx Falling edge
011	Toggle Mode	Current output is maintained	OCx Rising and Falling edge
100	Delayed One-Shot	0	OCx Falling edge
101	Continuous Pulse mode	0	OCx Falling edge
110	PWM mode without fault protection	0, if OCxR is zero 1, if OCxR is non-zero	No interrupt
111	PWM mode with fault protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling edge for OC1 to OC4

FIGURE 14-2: OUTPUT COMPARE OPERATION

REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 or 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	—	OCSIDL	_	—	_	—	_
bit 15							bit 8
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0
			OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit (
Legend:		HC = Cleared	n Hardware	HS = Set in H	lardware		
R = Readat	ole bit	W = Writable b	it	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 12-5 bit 4	Unimpleme OCFLT: PW 1 = PWM F 0 = No PW	Compare x continented: Read as 'C /M Fault Condition ault condition has M Fault condition only used when C	n Status bit occurred (clea has occurred	ared in hardwar			
bit 3	OCTSEL: C 1 = Timer3	Dutput Compare 1 is the clock source is the clock source	imer Select bit e for Compare	t x			
bit 2-0	OCM<2:0>: 111 = PWM 110 = PWM 101 = Initial 100 = Initial 011 = Comp 010 = Initial	Output Compare I mode on OCx, F I mode on OCx, F lize OCx pin low, lize OCx pin low, pare event toggle lize OCx pin high lize OCx pin low,	Mode Select ault pin enable ault pin disabl generate conti generate single s OCx pin compare even	bits ed ed nuous output pu e output pulse c nt forces OCx p	on OCx pin in low	pin	

000 = Output compare channel is disabled

© 2008 Microchip Technology Inc.

NOTES:

15.0 MOTOR CONTROL PWM MODULE

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the "dsPIC33F Family Reference Manual",
	"Section 14. Motor Control PWM"
	(DS70187), which is available from the
	Microchip website (www.microchip.com).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 device supports up to two dedicated Pulse Width Modulation (PWM) modules. The PWM1 module is a 6-channel PWM generator, and the PWM2 module is a 2-channel PWM generator.

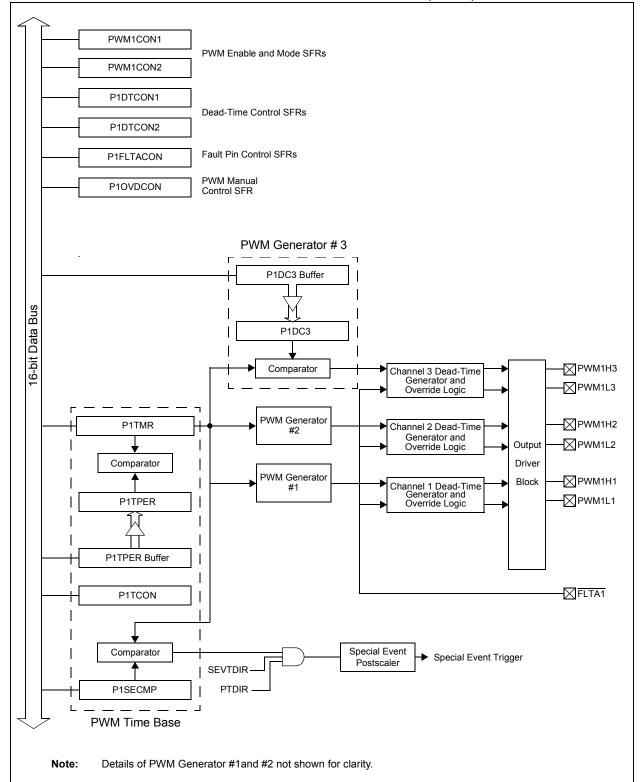
The PWM module has the following features:

- Up to 16-bit resolution
- On-the-fly PWM frequency changes
- · Edge and Center-Aligned Output modes
- · Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation or Brushless DC (BLDC)
- Special Event Comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates configurable to be immediate or synchronized to the PWM time base

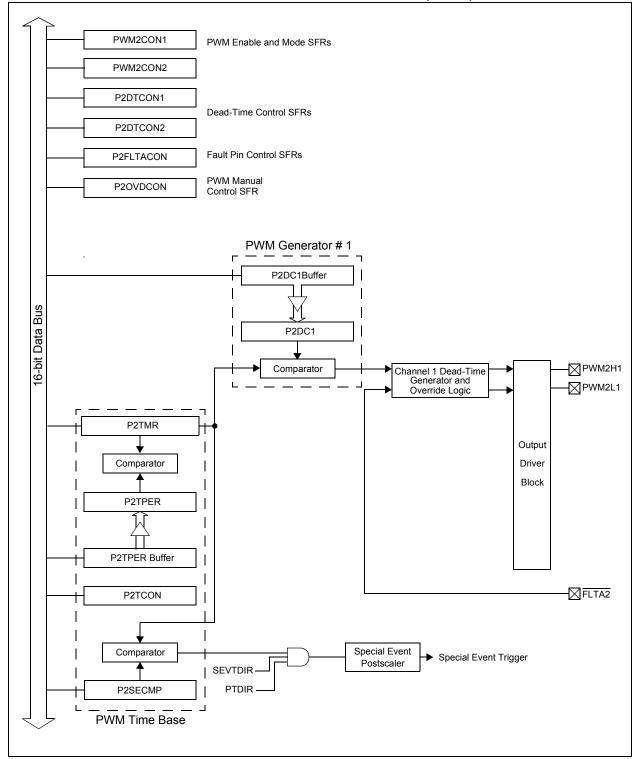
15.1 PWM1: 6-Channel PWM Module

This module simplifies the task of generating multiple synchronized PWM outputs. The following power and motion control applications are supported by the PWM module:

- 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- · Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)


This module contains three duty cycle generators, numbered 1 through 3. The module has six PWM output pins, numbered PWM1H1/PWM1L1 through PWM1H3/PWM1L3. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

15.2 PWM2: 2-Channel PWM Module


This module provides an additional pair of complimentary PWM outputs that can be used for:

- Independent PFC correction in a motor system
- Induction cooking

This module contains a duty cycle generator that provides two PWM outputs, numbered PWM2H1/ PWM2L1.

FIGURE 15-1: 6-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM1)

FIGURE 15-2: 2-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM2)

REGISTER	15-1: PxTC	ON: PWM TIN	IE BASE C	ONTROL REG	SISTER					
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
PTEN	—	PTSIDL	—	—	—	_	—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PTOPS	6<3:0>		PTCKF	PS<1:0>	PTMO	D<1:0>			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	PTEN: PWM	Time Base Tim	er Enable bi	t						
	1 = PWM tim	e base is on								
	0 = PWM tim	e base is off								
bit 14	Unimplemer	ted: Read as '	0'							
bit 13	PTSIDL: PWM Time Base Stop in Idle Mode bit									
		e base halts in e base runs in (
bit 12-8	Unimplemer	ted: Read as '	0'							
bit 7-4	PTOPS<3:0>: PWM Time Base Output Postscale Select bits									
	1111 = 1:16 postscale									
	•									
	•									
	•									
	0001 = 1:2 p 0000 = 1:1 p									
bit 3-2	PTCKPS<1:0	>: PWM Time	Base Input C	lock Prescale S	elect bits					
	11 = PWM time base input clock period is 64 Tcy (1:64 prescale)									
		10 = PWM time base input clock period is 16 Tcy (1:16 prescale)								
	01 = PWM time base input clock period is 4 TcY (1:4 prescale) 00 = PWM time base input clock period is TcY (1:1 prescale)									
bit 1 0		-	-		ale)					
bit 1-0		>: PWM Time E			Count mode w	<i>lith</i> interrupts for	vr doublo			
	PWM up	•		nuous Up/Down						
			es in a Conti	nuous Up/Down	Count mode					
	01 = PWM tir	ne base operat	es in Single I	Pulse mode						
	00 = PWM tir	ne base operat	es in a Free-	Running mode						

REGISTER 15-1: PxTCON: PWM TIME BASE CONTROL REGISTER

REGISTER 15-2: PxTMR: PWM TIMER COUNT VALUE REGISTER

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTDIR				PTMR<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTMF	R<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTDIR: PWM Time Base Count Direction Status bit (read-only)
	1 = PWM time base is counting down
	0 = PWM time base is counting up
bit 14-0	PTMR <14:0>: PWM Time Base Register Count Value bits

REGISTER 15-3: PXTPER: PWM TIME BASE PERIOD REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				PTPER<14:8	>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTPEI	R<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-0 **PTPER<14:0>:** PWM Time Base Period Value bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SEVTDIR ⁽¹⁾			S	SEVTCMP<14:8> ⁽²⁾			
bit 15	it 15				bit 8		
DAMA	D 444 A		D 444 0	D M M A	D 444 0	DAVA	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTCI	MP<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented		nented bit, rea	ad as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

REGISTER 15-4: PXSECMP: SPECIAL EVENT COMPARE REGISTER

bit 15	SEVTDIR: Special Event Trigger Time Base Direction bit ⁽¹⁾
	1 = A Special Event Trigger occurs when the PWM time base is counting downward
	0 = A Special Event Trigger occurs when the PWM time base is counting upward

bit 14-0 SEVTCMP<14:0>: Special Event Compare Value bits⁽²⁾

Note 1: SEVTDIR is compared with PTDIR (PxTMR<15>) to generate the Special Event Trigger.

2: PxSECMP<14:0> is compared with PxTMR<14:0> to generate the Special Event Trigger.

REGISTER 15-5:	PWMxCON1: PWM CONTROL REGISTER 1 ⁽²⁾
----------------	---

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—		—	PMOD3	PMOD2	PMOD1
bit 15							bit 8
U-0	R/W-1	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
_	PEN3H ⁽¹⁾	PEN2H ⁽¹⁾	PEN1H ⁽¹⁾	—	PEN3L ⁽¹⁾	PEN2L ⁽¹⁾	PEN1L ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown						nown	
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	PMOD4:PMC	DD1: PWM I/O	Pair Mode bits	3			
1 = PWM I/O pin pair is in the Independent PWM Output mode 0 = PWM I/O pin pair is in the Complementary Output mode							

bit 7	Unimplemented: Read as '0'
	Unimplemented: Read as 0

	bit 6-4	PEN3H:PEN1H: PWMxH I/O Enable	bits ⁽¹⁾
--	---------	-------------------------------	---------------------

- 1 = PWMxH pin is enabled for PWM output
 - 0 = PWMxH pin disabled, I/O pin becomes general purpose I/O
- bit 3 Unimplemented: Read as '0'
- bit 2-0 **PEN3L:PEN1L:** PWMxL I/O Enable bits⁽¹⁾
 - 1 = PWMxL pin is enabled for PWM output
 - $_{\rm 0}$ = PWMxL pin disabled, I/O pin becomes general purpose I/O
 - **Note 1:** Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register.
 - 2: PWM2 supports only one PWM I/O pin pair.

REGISTER	15-6: PWMx	CON2: PWM	CONTROL	REGISTER 2	2		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_			SEVO	PS<3:0>	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_		_	_	-	IUE	OSYNC	UDIS
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	• 0001 = 1:2 pc 0000 = 1:1 pc						
bit 7-3	Unimplemented: Read as '0'						
bit 2	IUE: Immediate Update Enable bit 1 = Updates to the active PxDC registers are immediate 0 = Updates to the active PxDC registers are synchronized to the PWM time base						
bit 1	OSYNC: Output ov	 Opdates to the active PXDC registers are synchronized to the PWM time base OSYNC: Output Override Synchronization bit 1 = Output overrides via the PxOVDCON register are synchronized to the PWM time base 0 = Output overrides via the PxOVDCON register occur on next Tcy boundary 					
bit 0	1 = Updates f	Jpdate Disable from Duty Cycle from Duty Cycle	and Period			-	

REGISTER 15-6: PWMxCON2: PWM CONTROL REGISTER 2

REGISTER 15-7: PxDTCON1: DEAD-TIME CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DTBPS<1:0> bit 15				DTB	<5:0>		
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DTAPS<1:0> DTA<5:0>							
bit 7							bit 0
Legend:							
R = Readable bit W		W = Writable	W = Writable bit		U = Unimplemented bit, read		
-n = Value at POR '1'		'1' = Bit is set	s set '0' = Bit is cleared		ared	x = Bit is unknown	
bit 15-14	11 = Clock p 10 = Clock p 01 = Clock p 00 = Clock p	>: Dead-Time U beriod for Dead- beriod for Dead- beriod for Dead- beriod for Dead-	Time Unit B is Time Unit B is Time Unit B is Time Unit B is	8 TCY 4 TCY 2 TCY 5 TCY			
bit 13-8	DTB<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit B bits						
bit 7-6	11 = Clock p 10 = Clock p	>: Dead-Time U period for Dead- period for Dead- period for Dead-	Time Unit A is Time Unit A is	8 TCY 4 TCY			

© 2008 Microchip Technology Inc.

REGISTEF	R 15-8: PxDT0	CON2: DEAD	-TIME CON	TROL REGIS	TER 2 ⁽¹⁾		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		—	—	_	—	
bit 15							bit
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I
bit 7							bit
Legend:							
R = Readal		W = Writable		•	nented bit, rea		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-6	-	ted: Read as '					
bit 5				Signal Going Ac	ctive bit		
		e provided fron e provided fron					
bit 4				gnal Going Inad	ctive bit		
		e provided fron					
		e provided fron					
bit 3	DTS2A: Dead	d-Time Select f	or PWMxH2 S	Signal Going Ac	ctive bit		
	1 = Dead time	e provided fron	n Unit B				
		e provided fron					
bit 2				gnal Going Inac	ctive bit		
		e provided fron					
L:1. 4		e provided fron			- 41 I . 14		
bit 1				Signal Going Ac	ctive dit		
		e provided fron e provided fron					
bit 0				gnal Going Inad	ctive bit		
		e provided fron					
	- Doud ann						

REGISTER 15-8: PxDTCON2: DEAD-TIME CONTROL REGISTER 2 (1)

Note 1: PWM2 supports only one PWM I/O pin pair.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L
bit 15		17/0/011	THOVE	17(0)/211	TROVEL	17.6VIII	bit
							Dit
R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
FLTAM	_	—	_	_	FAEN3	FAEN2	FAEN1
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13-8	FAOVxH<3:1	>:FAOVxL<3:	I>: Fault Inpu	t A PWM Overr	ide Value bits		
				n an external F			
		• •	riven inactive	on an external	Fault input ev	ent	
bit 7	FLTAM: Fault						
		A input pin fun		Cycle-by-Cycle	mode		
	0 = The Fault	A input pin late	ches all contro			tes in PxFLTAC	ON<13:8>
bit 6-3		A input pin late ted: Read as '				tes in PxFLTAC	ON<13:8>
bit 6-3 bit 2	Unimplemen)'			tes in PxFLTAC	ON<13:8>
	Unimplemen FAEN3: Fault 1 = PWMxH3/	ted: Read as ' Input A Enable /PWMxL3 pin p)' e bit pair is controlle	ol pins to the pro	ogrammed sta ut A	tes in PxFLTAC	ON<13:8>
	Unimplemen FAEN3: Fault 1 = PWMxH3/	ted: Read as ' Input A Enable /PWMxL3 pin p)' e bit pair is controlle	ol pins to the pro	ogrammed sta ut A	tes in PxFLTAC	ON<13:8>
	Unimplemen FAEN3: Fault 1 = PWMxH3, 0 = PWMxH3, FAEN2: Fault	ted: Read as ' Input A Enable /PWMxL3 pin p /PWMxL3 pin p Input A Enable	_o , e bit pair is controll pair is not con e bit	ol pins to the pro- ed by Fault Inpu trolled by Fault	ogrammed sta ut A Input A	tes in PxFLTAC	ON<13:8>
bit 2	Unimplement FAEN3: Fault 1 = PWMxH3, 0 = PWMxH3, FAEN2: Fault 1 = PWMxH2,	ted: Read as ' Input A Enable (PWMxL3 pin p (PWMxL3 pin p Input A Enable (PWMxL2 pin p)' e bit pair is controlle air is not con e bit pair is controlle	ol pins to the pro- ed by Fault Inpu trolled by Fault ed by Fault Inpu	ogrammed sta ut A Input A ut A	tes in PxFLTAC	ON<13:8>
bit 2	Unimplement FAEN3: Fault 1 = PWMxH3, 0 = PWMxH3, FAEN2: Fault 1 = PWMxH2, 0 = PWMxH2,	ted: Read as ' Input A Enable /PWMxL3 pin p /PWMxL3 pin p Input A Enable /PWMxL2 pin p /PWMxL2 pin p)' e bit pair is controlle pair is not con e bit pair is controlle pair is not con	ol pins to the pro- ed by Fault Inpu trolled by Fault	ogrammed sta ut A Input A ut A	tes in PxFLTAC	ON<13:8>
bit 2	Unimplement FAEN3: Fault 1 = PWMxH3, 0 = PWMxH3, FAEN2: Fault 1 = PWMxH2, 0 = PWMxH2, FAEN1: Fault	ted: Read as (Input A Enable (PWMxL3 pin p (PWMxL3 pin p Input A Enable (PWMxL2 pin p (PWMxL2 pin p Input A Enable)' e bit pair is controlle pair is not con e bit pair is controlle pair is not con e bit	ol pins to the pro- ed by Fault Inpu trolled by Fault ed by Fault Inpu	ogrammed sta ut A Input A ut A Input A	tes in PxFLTAC	ON<13:8>

REGISTER 15-9: PxFLTACON: FAULT A CONTROL REGISTER⁽¹⁾

Note 1: PWM2 supports only one PWM I/O pin pair.

R = Readable -n = Value at F		W = Writable '1' = Bit is set		U = Unimplemented bit, read as '0'			
Legend:							
bit 7							bit
—	—	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit
		POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

REGISTER 15-10: PxOVDCON: OVERRIDE CONTROL REGISTER⁽¹⁾

bit 15-14	Unimplemented: Read as '0'
bit 13-8	POVDxH<3:1>:POVDxL<3:1>: PWM Output Override bits
	 1 = Output on PWMx I/O pin is controlled by the PWM generator 0 = Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit
bit 7-6	Unimplemented: Read as '0'
bit 5-0	POUTxH<3:1>:POUTxL<3:1>: PWM Manual Output bits
	 1 = PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared 0 = PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared

Note 1: PWM2 supports only one PWM I/O pin pair.

REGISTER 15-11: PxDC1: PWM DUTY CYCLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PDC	1<15:8>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PDC	:1<7:0>			
						bit 0
oit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
	R/W-0	R/W-0 R/W-0	PDC R/W-0 R/W-0 R/W-0 PDC Dit W = Writable bit	PDC1<15:8> R/W-0 R/W-0 R/W-0 PDC1<7:0> PDC1<7:0>	PDC1<15:8> R/W-0 R/W-0 R/W-0 PDC1<7:0> Dit W = Writable bit U = Unimplemented bit, real	$PDC1<15:8>$ $R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0$ $PDC1<7:0>$ Dit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 PDC1<15:0>: PWM Duty Cycle 1 Value bits

REGISTER 15-12: P1DC2: PWM DUTY CYCLE REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PDC	2<15:8>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PDC	2<7:0>			
						bit 0
oit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
	R/W-0	R/W-0 R/W-0	PDC: R/W-0 R/W-0 R/W-0 PDC pit W = Writable bit	PDC2<15:8> R/W-0 R/W-0 PDC2<7:0> Dit W = Writable bit U = Unimplem	PDC2<15:8> $R/W-0 R/W-0 R/W-0 R/W-0$ $PDC2<7:0>$ bit W = Writable bit U = Unimplemented bit, read	$PDC2<15:8>$ $R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0$ $PDC2<7:0>$ bit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 PDC2<15:0>: PWM Duty Cycle 2 Value bits

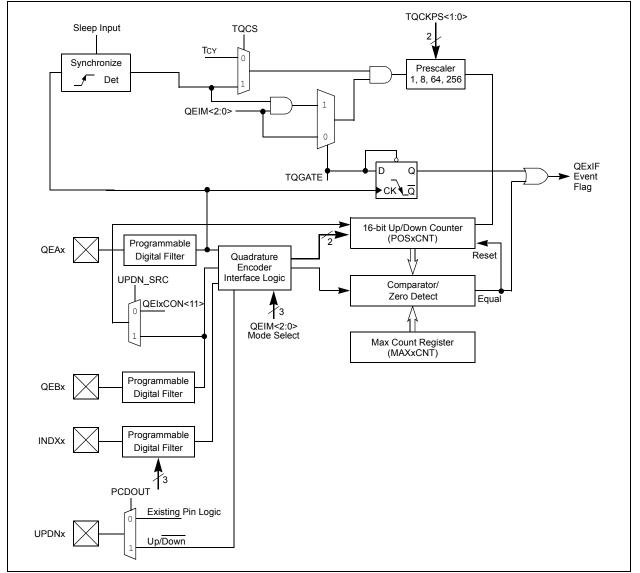
REGISTER 15-13: P1DC3: PWM DUTY CYCLE REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	3<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PDC3<15:0>: PWM Duty Cycle 3 Value bits

NOTES:

16.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE


Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04. and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family "Section Reference Manual", 15 Quadrature Encoder Interface (QEI)" (DS70208), which is available from the Microchip website (www.microchip.com).

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data. The operational features of the QEI include:

- Three input channels for two phase signals and index pulse
- 16-bit up/down position counter
- · Count direction status
- Position Measurement (x2 and x4) mode
- · Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Quadrature Encoder Interface interrupts

These operating modes are determined by setting the appropriate bits, QEIM<2:0> in (QEIxCON<10:8>). Figure 16-1 depicts the Quadrature Encoder Interface block diagram.

Note: An 'x' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number (x = 1 or 2).

FIGURE 16-1: QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM (x = 1 OR 2)

REGISTER 1	6-1: QEIxC	ON: QEIx CO	ONTROL RE	GISTER (x =	: 1 or 2)		
R/W-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
CNTERR	_	QEISIDL	INDEX	UPDN		QEIM<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWPAB	PCDOUT	TQGATE	-	PS<1:0>	POSRES	TQCS	UPDN_SRC
bit 7	100001	TQUAL		1031.02	TOORED	1000	bit (
Legend:	L :4		L:4		monted bit read	aa (0)	
R = Readable		W = Writable			mented bit, read		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cl€	ared	x = Bit is unk	nown
bit 15	CNTERR: Co	ount Error Statu	s Flag bit ⁽¹⁾				
		count error has					
		on count error h					
bit 14	-	ted: Read as '					
bit 13		op in Idle Mode ue module ope		levice enters la	lle mode		
		module operat			ile mode		
bit 12		Pin State Stat					
	1 = Index pin	is High	,	57			
	0 = Index pin						
bit 11		on Counter Dir					
		Counter Direction	•	. ,			
bit 10-8		Quadrature En	•	. ,	bits		
					with position co	unter reset by	match
	(MAXx	CNT)			·	-	
					with Index Puls		
	101 = Quadra (MAXx		ntenace enat	bied (x∠ mode)	with position co	unter reset by	match
			nterface enal	oled (x2 mode)	with Index Puls	e reset of pos	ition counter
		d (Module disa	,				
	010 = Unuse 001 = Starts '	d (Module disa	bled)				
		ature Encoder I	nterface/Time	er off			
bit 7	SWPAB: Pha	ise A and Phas	e B Input Swa	ap Select bit			
		and Phase B ir	-	-			
	0 = Phase A a	and Phase B ir	puts not swaj	oped			
bit 6	PCDOUT: Po	sition Counter	Direction Stat	e Output Enab	le bit		
	1 = Position C	Counter Direction	on Status Out	put Enable (QI	El logic controls	state of I/O pi	n)
	0 = Position 0	Counter Direction	on Status Out	put Disabled (I	Normal I/O pin o	peration)	
Note 1: Cl	NTERR flag only	y applies when	QEIM<2:0> :	= '110' or '100			
2 : Re	ead-only bit whe	en QEIM<2:0>	= '1xx'. Read	l/write bit wher	QEIM<2:0> = '0	001'.	
	escaler utilized						
	nis bit applies or		•	or 110.			
		-					

REGISTER 16-1: QEIXCON: QEIX CONTROL REGISTER (x = 1 or 2)

REGISTER 16-1: QEIXCON: QEIX CONTROL REGISTER (x = 1 or 2) (CONTINUED)

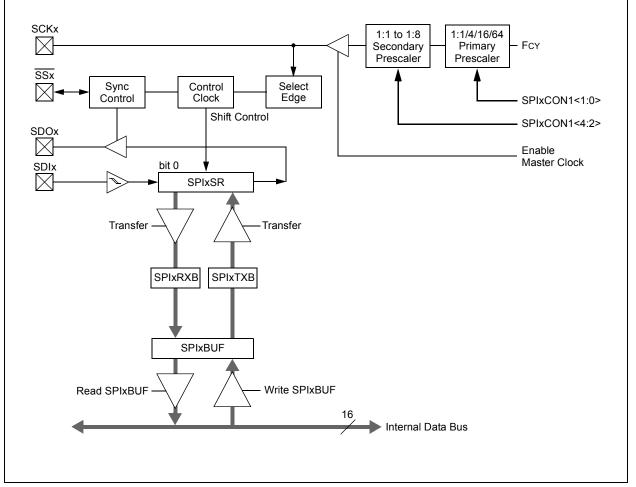
bit 5	TQGATE: Timer Gated Time Accumulation Enable bit
	 Timer gated time accumulation enabled
	0 = Timer gated time accumulation disabled
bit 4-3	TQCKPS<1:0>: Timer Input Clock Prescale Select bits ⁽³⁾
	11 = 1:256 prescale value
	10 = 1:64 prescale value
	01 = 1:8 prescale value
	00 = 1:1 prescale value
bit 2	POSRES: Position Counter Reset Enable bit ⁽⁴⁾
	1 = Index Pulse resets Position Counter
	0 = Index Pulse does not reset Position Counter
bit 1	TQCS: Timer Clock Source Select bit
	 External clock from pin QEAx (on the rising edge)
	0 = Internal clock (TcY)
bit 0	UPDN_SRC: Position Counter Direction Selection Control bit ⁽⁵⁾
	1 = QEBx pin state defines position counter direction
	0 = Control/Status bit, UPDN (QEIxCON<11>), defines timer counter (POSxCNT) direction
Note 1	CNTERR flag only applies when QEIM<2:0> = '110' or '100'.

- 2: Read-only bit when QEIM<2:0> = '1xx'. Read/write bit when QEIM<2:0> = '001'.
- 3: Prescaler utilized for 16-bit Timer mode only.
- 4: This bit applies only when QEIM < 2:0 > = 100 or 110.
- 5: When configured for QEI mode, this control bit is a 'don't care'.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—	—	_	_	IMV<	:2:0>	CEID		
bit 15				·			bit		
R/W-0		R/W-0							
				U-0	U-0	U-0	U-0		
QEOUT		QECK<2:0>		_	_	_	bit		
							DIL		
Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-11	Unimplement	ted: Read as '0)'						
bit 10-9					user applicatio				
			-	lex pulse when	the POSxCNT r	egister is to be	reset.		
		ure Count Mod	<u>e</u> :						
	 IMV1 = Required State of Phase B input signal for match on index pulse IMV0 = Required State of Phase A input signal for match on index pulse 								
	IMVO = F	Required State	of Phase A i						
	IMV0 = F In x4 Quadrate	Required State	of Phase A i <u>e</u> :	input signal for	match on index	pulse	• B)		
	IMV0 = F In x4 Quadrate IMV1 = S	Required State ure Count Mode Selects Phase i	of Phase A i <u>e</u> : nput signal f	for Index state r	match on index natch (0 = Phas	pulse e A, 1 = Phase			
bit 8	IMVO = F In x4 Quadrate IMV1 = S IMVO = F	Required State ure Count Mode Selects Phase i Required state	of Phase A i <u>e</u> : nput signal f of the select	for Index state r	match on index	pulse e A, 1 = Phase			
bit 8	IMV0 = F In x4 Quadrate IMV1 = S IMV0 = F CEID: Count F	Required State ure Count Mod Selects Phase i Required state o Error Interrupt [of Phase A i <u>e</u> : nput signal f of the select Disable bit	input signal for for Index state r ed Phase input	match on index natch (0 = Phas	pulse e A, 1 = Phase			
bit 8	IMV0 = F In x4 Quadrate IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts	Required State ure Count Mode Selects Phase i Required state	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa	input signal for for Index state r ed Phase input abled	match on index natch (0 = Phas	pulse e A, 1 = Phase			
	IMV0 = F In x4 Quadrate IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts	Required State ure Count Mode Selects Phase i Required state of Error Interrupt I due to count er due to count er	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena	for Index state r for Index state r ed Phase input abled abled	match on index natch (0 = Phas signal for match	pulse e A, 1 = Phase			
	IMV0 = F In x4 Quadratu IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA	Required State ure Count Mode Selects Phase i Required state of Error Interrupt I due to count er due to count er	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena Pin Digital f	input signal for for Index state r ed Phase input abled	match on index natch (0 = Phas signal for match	pulse e A, 1 = Phase			
	IMV0 = F In x4 Quadratu IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte	Required State ure Count Mod Selects Phase i Required state of Error Interrupt I due to count er due to count er x/QEBx/INDXx	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rors are ena Pin Digital F led	input signal for for Index state r ed Phase input abled abled Filter Output En	match on index natch (0 = Phas signal for match	pulse e A, 1 = Phase			
bit 7	IMV0 = F In x4 Quadratu IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte	Required State ure Count Mode Selects Phase i Required state of Error Interrupt I due to count er due to count er x/QEBx/INDXx er outputs enab er outputs disab	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena Pin Digital f led led (normal	input signal for for Index state r ed Phase input abled abled Filter Output En	match on index natch (0 = Phas signal for match able bit	pulse e A, 1 = Phase			
bit 7	IMV0 = F In x4 Quadratu IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte	Required State ure Count Mode Selects Phase i Required state of Error Interrupt I due to count er due to count er x/QEBx/INDXx er outputs enab er outputs disab QEAx/QEBx/IN	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena Pin Digital f led led (normal	input signal for for Index state r ed Phase input abled abled Filter Output En pin operation)	match on index natch (0 = Phas signal for match able bit	pulse e A, 1 = Phase			
bit 7	IMV0 = F In x4 Quadratu IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 C 110 = 1:128 C	Required State ure Count Modi Selects Phase i Required state of Error Interrupt I due to count er due to count er x/QEBx/INDXx er outputs enab er outputs disab QEAx/QEBx/IN Clock Divide	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena Pin Digital f led led (normal	input signal for for Index state r ed Phase input abled abled Filter Output En pin operation)	match on index natch (0 = Phas signal for match able bit	pulse e A, 1 = Phase			
bit 7	IMV0 = F In x4 Quadratu IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 C 110 = 1:128 C 101 = 1:64 Ch	Required State ure Count Modi Selects Phase i Required state of Error Interrupt I due to count er due to count er x/QEBx/INDXx er outputs enab er outputs disab QEAx/QEBx/IN Clock Divide Clock Divide	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena Pin Digital f led led (normal	input signal for for Index state r ed Phase input abled abled Filter Output En pin operation)	match on index natch (0 = Phas signal for match able bit	pulse e A, 1 = Phase			
bit 7	IMV0 = F In x4 Quadratu IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 C 110 = 1:128 C 101 = 1:64 Ch 100 = 1:32 Ch	Required State ure Count Modi Selects Phase i Required state of Error Interrupt I due to count er due to count er x/QEBx/INDXx er outputs enab or outputs disab QEAx/QEBx/IND Clock Divide Clock Divide ock Divide	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena Pin Digital f led led (normal	input signal for for Index state r ed Phase input abled abled Filter Output En pin operation)	match on index natch (0 = Phas signal for match able bit	pulse e A, 1 = Phase			
bit 8 bit 7 bit 6-4	IMV0 = F In x4 Quadrati IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 C 110 = 1:128 C 101 = 1:64 CH 011 = 1:16 CH	Required State ure Count Modi Selects Phase i Required state of Error Interrupt I due to count er due to count er x/QEBx/INDXx er outputs enab er outputs disab QEAx/QEBx/IN Clock Divide Ock Divide ock Divide ock Divide	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena Pin Digital f led led (normal	input signal for for Index state r ed Phase input abled abled Filter Output En pin operation)	match on index natch (0 = Phas signal for match able bit	pulse e A, 1 = Phase			
bit 7	IMV0 = F In x4 Quadratu IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte 0 = Digital filte 0 = Digital filte 111 = 1:256 C 110 = 1:128 C 101 = 1:64 Cle 100 = 1:32 Cle 011 = 1:16 Cle 010 = 1:4 Cle	Required State ure Count Modi Selects Phase i Required state of Error Interrupt I due to count er due to count er x/QEBx/INDXx er outputs enab er outputs disab QEAx/QEBx/INDXx cock Divide Clock Divide ock Divide ock Divide ock Divide ock Divide	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena Pin Digital f led led (normal	input signal for for Index state r ed Phase input abled abled Filter Output En pin operation)	match on index natch (0 = Phas signal for match able bit	pulse e A, 1 = Phase			
bit 7	IMV0 = F In x4 Quadrati IMV1 = S IMV0 = F CEID: Count F 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 C 110 = 1:128 C 101 = 1:64 CH 101 = 1:16 CH	Required State ure Count Modi Selects Phase i Required state of Error Interrupt I due to count er due to count er due to count er x/QEBx/INDXx er outputs enab er outputs disab QEAx/QEBx/INDXx cr outputs disab QEAx/QEBx/IND Clock Divide Clock Divide ock Divide ock Divide ck Divide ck Divide	of Phase A i <u>e</u> : nput signal f of the select Disable bit rrors are disa rrors are ena Pin Digital f led led (normal	input signal for for Index state r ed Phase input abled abled Filter Output En pin operation)	match on index natch (0 = Phas signal for match able bit	pulse e A, 1 = Phase			

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04. and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", "Section 18. Serial Peripheral Interface (SPI)" (DS70206), which is available from the Microchip website (www.microchip.com).


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- SDIx (serial data input)
- · SDOx (serial data output)
- <u>SCK</u>x (shift clock input or output)
- SSx (active low slave select).

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 17-1: SPI MODULE BLOCK DIAGRAM

© 2008 Microchip Technology Inc.

	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	_	SPISIDL		—	_	_	_
bit 15						÷	bit 8
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
0-0	SPIROV		0-0		0-0	SPITBF	SPIRBF
bit 7	011107					опты	bit 0
Logondu		C = Clearable	h:+				
Legend: R = Readat	alo hit	W = Writable b			opted bit rea	d oo 'O'	
-n = Value a		1' = Bit is set	אנ	U = Unimplem		x = Bit is unkr	
	al FOR	I – DILIS SEL			areu	x – DILISUIIKI	IUWII
bit 15	SPIEN: SPIX	Enable bit					
			figures SCK	, SDOx, SDIx a	ind SSx as sei	rial port pins	
	0 = Disables I		0				
bit 14	Unimplemen	ted: Read as '0)'				
bit 13	SPISIDL: Sto	p in Idle Mode b	oit				
				levice enters Idl	e mode		
bit 12-7		module operation		de			
bit 6	-	ted: Read as '0 eive Overflow F					
			0	eived and disca	rded. The use	er software has	not read the
	previous o	ata in the SPIx	BUF register				
		ow has occurred					
	Unimplomon	ted: Read as '0	,				
bit 5-2	Ommplemen						
bit 5-2 bit 1	SPITBF: SPI)	<pre>c Transmit Buffe</pre>	er Full Status				
	SPITBF: SPI	k Transmit Buffe not yet started,	er Full Status SPIxTXB is f				
	SPITBF: SPI 1 = Transmit 1 0 = Transmit s	<pre>< Transmit Buffe not yet started, started, SPIxTX</pre>	er Full Status SPIxTXB is f Ɓ is empty	ull	location load	ling SPIxTXB	
	SPITBF: SPI 1 = Transmit 0 = Transmit s Automatically	<pre>x Transmit Buffe not yet started, started, SPIxTX set in hardware</pre>	er Full Status SPIxTXB is f B is empty e when CPU	ull writes SPIxBUF		ling SPIxTXB m SPIxTXB to S	SPIxSR
bit 1	SPITBF: SPI> 1 = Transmit of 0 = Transmit of Automatically Automatically	<pre>x Transmit Buffe not yet started, started, SPIxTX set in hardware</pre>	er Full Status SPIxTXB is f B is empty when CPU ware when S	writes SPIxBUF SPIx module tra		0	SPIxSR
bit 1	SPITBF: SPI> 1 = Transmit of 0 = Transmit s Automatically Automatically SPIRBF: SPI	CTransmit Buffe not yet started, started, SPIxTX set in hardware cleared in hard	er Full Status SPIxTXB is f B is empty when CPU ware when S r Full Status	writes SPIxBUF SPIx module tra		0	SPIxSR
	SPITBF: SPI> 1 = Transmit (0 = Transmit (Automatically Automatically SPIRBF: SPI(1 = Receive (0 = Receive (s)	c Transmit Buffe not yet started, started, SPIxTX set in hardware cleared in hard x Receive Buffe complete, SPIxF s not complete,	er Full Status SPIxTXB is f B is empty e when CPU ware when S er Full Status RXB is full SPIxRXB is	writes SPIxBUF SPIx module tran bit	nsfers data fro	m SPIxTXB to S	SPIxSR

REGISTER 17-1: SPIx STATUS AND CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN	CKP	MSTEN		SPRE<2:0>	•	PPRE	<1:0>			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable b	oit	U = Unimplei	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-13	•	nted: Read as '0								
bit 12		sable SCKx pin t SPI clock is disa		• •						
		SPI clock is enal		10115 45 1/0						
bit 11	DISSDO: Disable SDOx pin bit									
		1 = SDOx pin is not used by module; pin functions as I/O								
	-	n is controlled by								
bit 10		DE16: Word/Byte Communication Select bit								
	 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) 									
bit 9		Data Input Samp	. ,							
	Master mod									
	1 = Input data sampled at end of data output time									
	•	 Input data sampled at middle of data output time <u>Slave mode:</u> 								
		e cleared when s	SPIx is used i	in Slave mode						
bit 8		Clock Edge Seled								
		= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)								
	0 = Serial ou	tput data change	es on transitio	on from Idle clo	ock state to activ	ve clock state (see bit 6)			
bit 7		e Select Enable I		de)						
	1 = <u>SSx</u> pin used for Slave mode 0 = SSx pin not used by module. Pin controlled by port function.									
bit 6	CKP: Clock Polarity Select bit									
	1 = Idle state for clock is a high level; active state is a low level									
	0 = Idle state	e for clock is a lo	w level; active	e state is a hig	h level					
bit 5		ster Mode Enabl	e bit							
	1 = Master r 0 = Slave m									
		uue								

(FRMEN = 1).

© 2008 Microchip Technology Inc.

REGISTER 17-2: SPIxCON1: SPIx CONTROL REGISTER 1 (CONTINUED)

- - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
 - **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).

REGISTER 17-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
_	—		—	—	—	FRMDLY	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	
bit 15	FRMEN: Frar	ned SPIx Supp	ort bit					
				pin used as frame sync pulse input/output)				
		SPIx support dis						
bit 14		me Sync Pulse		itrol bit				
	1 = Frame sync pulse input (slave		· · ·					
	0 = Frame sync pulse output (master)							
bit 13								
		nc pulse is acti						
	0 = Frame sync pulse is active-low							
bit 12-2	Unimplemen	ted: Read as '	0'					
bit 1	FRMDLY: Fra	ame Sync Pulse	e Edge Select	bit				
	1 = Frame sy	nc pulse coinci	des with first I	oit clock				

- 0 = Frame sync pulse precedes first bit clock
- bit 0 **Unimplemented:** This bit must not be set to '1' by the user application.

NOTES:

18.0 INTER-INTEGRATED CIRCUIT (I²C™)

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "*dsPIC33F Family Reference Manual*", "Section 19. Inter-Integrated Circuit (I²C[™])" (DS70195), which is available from the Microchip website (www.microchip.com).

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.

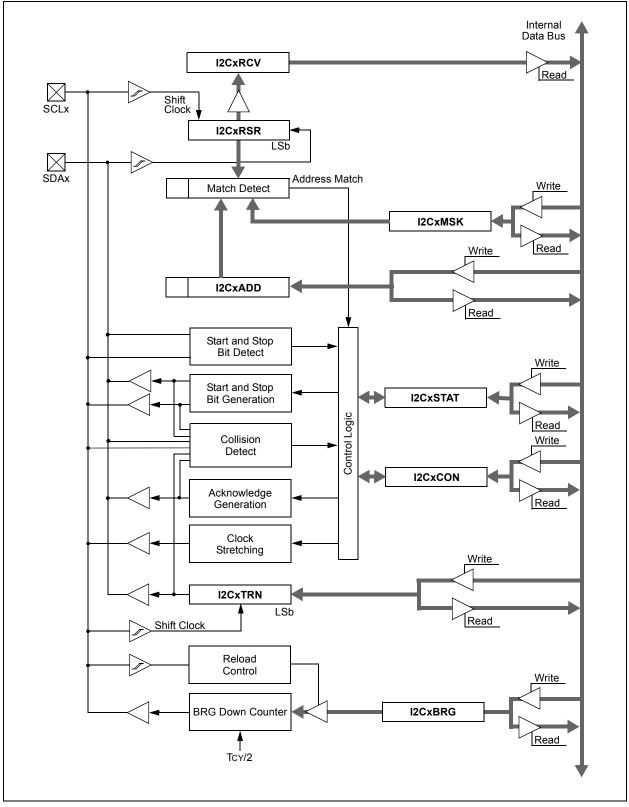
18.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7- or 10-bit address


For details about the communication sequence in each of these modes, refer to the "*dsPlC33F Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest dsPlC33F Family Reference Manual chapters.

18.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated. FIGURE 18-1: I^2C^{TM} BLOCK DIAGRAM (x = 1)

REGISTER [·]	18-1: I2CxC	ON: I2Cx CO	NTROL REC	SISTER				
R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0	
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7				I			bit 0	
Legend:		U = Unimpler	nented bit, rea	d as '0'				
R = Readable	e bit	W = Writable	bit	HS = Set in h	ardware	HC = Cleared	in hardware	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	12CEN: I2Cx 1 = Enables t		e and configur	es the SDAx a	and SCLx pins a	as serial port pi	าร	
	0 = Disables	the I2Cx modu	le. All l ² C™ pi	ns are controll	ed by port func	tions		
bit 14	Unimplemen	ted: Read as '	0'					
bit 13		p in Idle Mode						
		ue module ope module operat			n Idle mode			
bit 12	SCLREL: SC	Lx Release Co	ontrol bit (wher	operating as	l ² C slave)			
	 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) 							
	at beginning o If STREN = 0	e., software car of slave transm <u>:</u> ., software can	iission. Hardwa	are clear at en	d of slave rece	elease clock). H ption. ear at beginning		
bit 11	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled							
bit 10	A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address							
bit 9	DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control enabled							
bit 8	SMEN: SMbus Input Levels bit							
		O pin threshold Mbus input thr		ith SMbus spe	cification			
bit 7	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 							
bit 6	 0 = General call address disabled STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching 							

REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

REGISTER 1	8-2: I2CxS	TAT: I2Cx ST	ATUS REGI	STER					
R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC		
ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10		
bit 15							bita		
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC		
IWCOL	12COV	D_A	P	S	R W	RBF	TBF		
bit 7	12007		•	0	<u> </u>	11DI	bit		
Legend: R = Readable	hit	W = Writable	nented bit, rea		ardwara	HSC = Hardwa	ara aat/alaara		
				HS = Set in h					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	1 = NACK rec	ng as l ² C™ m eived from sla ived from slav	aster, applical ive e		ransmit operati	ion)			
bit 14	TRSTAT: Tran 1 = Master tra 0 = Master tra	nsmit Status bi ansmit is in pro ansmit is not in	t (when opera ogress (8 bits - o progress	ting as l ² C ma ⊦ ACK)		e to master trans and of slave Ack			
bit 13-11	Unimplemen	ted: Read as	0'						
bit 10	BCL: Master	Bus Collision I	Detect bit						
	1 = A bus coll 0 = No collisio Hardware set	on		ing a master o	peration				
bit 9	GCSTAT: Ger	neral Call Statu	us bit						
	0 = General c	all address wa all address wa when address	as not received		ss. Hardware	clear at Stop det	ection.		
bit 8	ADD10: 10-bit 1 = 10-bit add 0 = 10-bit add	t Address Stat Iress was mate Iress was not i	us bit ched matched			re clear at Stop			
bit 7	IWCOL: Write	e Collision Det	ect bit						
	0 = No collisio	on	-		ause the I ² C m	-			
				CxTRN while b	usy (cleared by	y software).			
bit 6	I2COV: Recei		0						
	0 = No overflo	ow.		-	till holding the				
bit 5		Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). D_A: Data/Address bit (when operating as I ² C slave)							
	1 = Indicates 0 = Indicates	that the last by that the last by	/te received w /te received w	as data as device add	ress by reception of	f slave byte.			
bit 4	0 = Stop bit w	that a Stop bit as not detecte or clear when	ed last	ected last ed Start or Sto	p detected.				

~ -----40 100

REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
—	—	—	—	—	AMSK9	AMSK8		
	·				-	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0		
bit 7						bit 0		
R = Readable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
	R/W-0 AMSK6	R/W-0 R/W-0 AMSK6 AMSK5	R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 bit W = Writable bit	R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3	R/W-0 R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 bit W = Writable bit U = Unimplemented bit, read	AMSK9 AMSK9 AMSK9 AMSK9 AMSK9 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK6 W = Writable bit U = Unimplemented bit, read as '0'		

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 =Disable masking for bit x; bit match required in this position

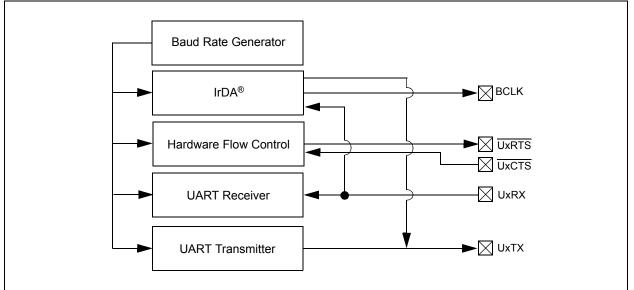
NOTES:

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the "dsPIC33F Family Reference Manual",
	"Section 17. UART" (DS70188), which is
	available from the Microchip website
	(www.microchip.com).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


• Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins

- Even, Odd or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 1 Mbps to 15 Mbps at 16 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- · 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- · Support for sync and break characters
- · Support for automatic baud rate detection
- · IrDA encoder and decoder logic
- 16x baud clock output for IrDA support

A simplified block diagram of the UART module is shown in Figure 19-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
UARTEN		USIDL	IREN ⁽¹⁾	RTSMD			<1:0>			
bit 15		OOIDE		TTOME		ULN ULN	bit 8			
							bit (
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAKE	LPBACK	ABAUD	URXINV	BRGH	-	EL<1:0>	STSEL			
bit 7		, 18, 188	O I U UI U	Bittori	1 0 0 2		bit			
Legend:		HC = Hardwa	re cleared							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
							-			
bit 15	UARTEN: UA	RTx Enable bi	t							
	1 = UARTx is	s enabled; all U	ARTx pins are	e controlled by	UARTx as def	ined by UEN<1	:0>			
		s disabled; all L	IARTx pins ar	e controlled by	port latches; ۱ ،	JARTx power co	onsumption			
	minimal									
bit 14		ted: Read as '								
bit 13	USIDL: Stop in Idle Mode bit									
	1 = Discontinue module operation when device enters Idle mode									
bit 12	 0 = Continue module operation in Idle mode IREN: IrDA Encoder and Decoder Enable bit⁽¹⁾ 									
DIL 12	1 = IrDA encoder and decoder enabled									
	0 = IrDA encoder and decoder disabled									
bit 11	RTSMD: Mode Selection for UxRTS Pin bit									
	$1 = \overline{\text{UxRTS}}$ pin in Simplex mode									
	$0 = \overline{\text{UxRTS}} p$	in in Flow Cont	rol mode							
bit 10	Unimplemen	ted: Read as ')'							
bit 9-8		ARTx Enable b								
	11 = UxTX, UxRX and BCLK pins are enabled and used; $\overline{\text{UxCTS}}$ pin controlled by port latches									
	10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used 01 = UxTX, UxRX and $\overline{\text{UxRTS}}$ pins are enabled and used; $\overline{\text{UxCTS}}$ pin controlled by port latches									
	00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by									
	port latc	hes								
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit									
	1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared									
	in hardware on following rising edge 0 = No wake-up enabled									
bit 6		-	Mode Select	hit						
bit 0	LPBACK: UARTx Loopback Mode Select bit 1 = Enable Loopback mode									
	0 = Loopback mode									
bit 5	ABAUD: Auto-Baud Enable bit									
						eception of a S	ync field (55h			
		her data; cleare			tion					
1. 11. A		e measuremen		completed						
bit 4		URXINV: Receive Polarity Inversion bit								
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'									

REGISTER 19-1: UxMODE: UARTx MODE REGISTER

Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 1				CONTROL RE			
R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
pit 15							bit
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit
_egend:		HC = Hardwa	re cleared				
R = Readable	bit	W = Writable I		II = I Inimplem	nented bit, read	las 'O'	
-n = Value at I		'1' = Bit is set	on	'0' = Bit is clea		x = Bit is unkr	NWD
bit 15,13	11 = Reserve 10 = Interrupt transmit 01 = Interrupt	d; do not use when a charac buffer become	cter is transfe s empty character is s	lode Selection b prred to the Tran shifted out of the	smit Shift Regi		
	00 = Interrupt at least o	t when a charac one character o	cter is transfe	,	· ·	ster (this implie	es there is
bit 14	1 = IrDA enc	[®] Encoder Tra oded, UxTX Idi oded, UxTX Idi	e state is '1'	y Inversion bit ⁽¹⁾)		
oit 12	Unimplemen	ted: Read as ')'				
oit 11		ansmit Break bi					
	cleared b	nc Break on nex by hardware up ak transmission	on completio		lowed by twelve	e '0' bits, follow	ed by Stop I
oit 10	UTXEN: Tran	smit Enable bit		·			
		enabled, UxTX disabled, any p		ed by UARTx smission is abor	ted and buffer	is reset. UxTX	pin controll
bit 9	1 = Transmit		·	ead-only) e more characte	er can be writte	n	
oit 8		mit Shift Regist					
	1 = Transmit	Shift Register is	s empty and t	ransmit buffer is a transmission i			as complete
oit 7-6		0>: Receive Int	•		o buffer full (o hoo 4 data -	horostara'
	10 = Interrupt 0x = Interrup	is set on UxRS	SR transfer m ny character	naking the receiv naking the receiv is received and ore characters.	ve buffer 3/4 fu	ll (i.e., has 3 da	ita characte
oit 5	ADDEN: Add	ress Character	Detect bit (b	it 8 of received of	data = 1)		
		Detect mode er Detect mode di		it mode is not s	elected, this do	es not take effe	ect.
Noto 1: \/	alue of hit only	affects the tr	ansmit prop	erties of the m	odule when th	e IrDA encod	er is enab

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 4
 RIDLE: Receiver Idle bit (read-only)

 1 = Receiver is Idle
 0 = Receiver is active

 bit 3
 PERR: Parity Error Status bit (read-only)

 1 = Parity error has been detected for the current character (character at the top of the receive FIFO)

 0 = Parity error has not been detected

 bit 2
 FERR: Framing Error Status bit (read-only)
 - 1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
 - 0 = Framing error has not been detected
- bit 1 **OERR:** Receive Buffer Overrun Error Status bit (read/clear only)
 - 1 = Receive buffer has overflowed
 - 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 \rightarrow 0 transition) resets the receiver buffer and the UxRSR to the empty state.
- bit 0 URXDA: Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty
 - **Note 1:** Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).

NOTES:

20.0 ENHANCED CAN (ECAN™) MODULE

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04. and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", "Section 21. Enhanced Controller Area Network (ECAN™)" (DS70185), which is available from the Microchip website (www.microchip.com).

20.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
 acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source

- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

20.2 Frame Types

The ECAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

• Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).

• Extended Data Frame:

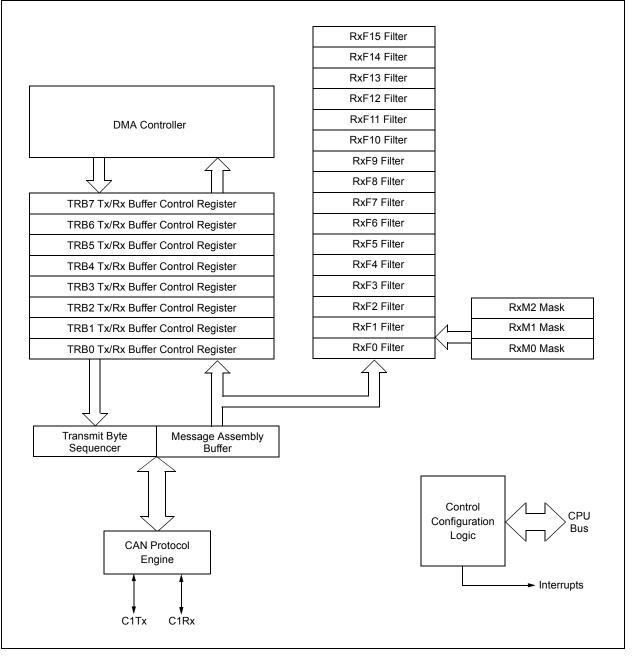
An extended data frame is similar to a standard data frame, but includes an extended identifier as well.

• Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.

Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.


• Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.

· Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

FIGURE 20-1: ECAN™ MODULE BLOCK DIAGRAM

20.3 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

20.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- · All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- · Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

20.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

20.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

20.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

20.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

20.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0				
	_	CSIDL	ABAT	CANCKS		REQOP<2:0>					
pit 15							bit				
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
	OPMODE<2:0>			CANCAP			WIN				
oit 7							bit				
_egend:		C = Writable	bit, but only 'C)' can be writter	to clear the b	it					
R = Readable	e bit	W = Writable			nented bit, rea						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unkno	own				
bit 15-14	Unimplemen	ted: Read as	0'								
bit 13	CSIDL: Stop	in Idle Mode b	it								
				levice enters Id	le mode						
		module operation									
bit 12		All Pending Tr									
	 Signal all transmit buffers to abort transmission. Module will clear this bit when all transmissions are aborted 										
bit 11		AN Master Clo									
		N clock is FCY									
		N clock is Fos	2								
bit 10-8	REQOP<2:0>	Request Op	eration Mode	bits							
		rmal Operation	n mode								
	001 = Set Disable mode 010 = Set Loopback mode										
		ten Only Mode	į								
		nfiguration mo									
	101 = Reserved										
	110 = Reserved 111 = Set Listen All Messages mode										
bit 7-5		0>: Operation									
Dit 7-5		-		do							
	000 = Module is in Normal Operation mode 001 = Module is in Disable mode										
	010 = Module is in Loopback mode										
		e is in Listen O									
	100 = Module 101 = Reserv	100 = Module is in Configuration mode									
	110 = Reserv										
	111 = Module	e is in Listen A	I Messages n	node							
bit 4	Unimplemen	ted: Read as	0'								
bit 3		•		Capture Event							
	1 = Enable in 0 = Disable C		sed on CAN r	nessage receiv	e						
bit 2-1		ted: Read as	∩'								
bit 0	•	ap Window Sel									
	1 = Use filter	•									
	0 = Use buffe										

REGISTER 20	-2: CiCT	RL2: ECAN™	CONTROL	REGISTER 2	2			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	_	_	_	—	_	
bit 15							bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
—	_	—	DNCNT<4:0>					
bit 7							bit 0	
Legend:		C = Writable b	oit, but only '	0' can be writter	n to clear the l	bit		
R = Readable b	it	W = Writable	bit	U = Unimplei	mented bit, re	ad as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-5	Unimplemented: Read as '0'					
bit 4-0	DNCNT<4:0>: DeviceNet [™] Filter Bit Number bits					
	10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17>					
	•					
	•					
	•					
	00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes					

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
	_				FILHIT<4:0>	>					
bit 15							bit				
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0				
		10	IX U	ICODE<6:0>		10	IX U				
pit 7							bit				
_egend:		C = Writable	bit but only '	0' can be writter	to clear the b	it					
R = Readabl	e bit	W = Writable			mented bit, rea						
n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown				
oit 15-13	=	ted: Read as '									
bit 12-8		Filter Hit Num	ber bits								
	10000-1111										
	01111 = Filter 15										
	•										
	•										
	00001 = Filte 00000 = Filte										
oit 7	Unimplemen	ted: Read as '	0'								
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits										
	1000100 = F	11111 = Rese IFO almost full eceiver overflo	interrupt								
	1000010 = Wake-up interrupt 1000001 = Error interrupt 1000000 = No interrupt										
	•										
	•										
	•										
	0010000-0111111 = Reserved 0001111 = RB15 buffer Interrupt										
	•										
	•										
	•										
	0001000 = R 0000111 = T 0000110 = T	B9 buffer inter B8 buffer inter RB7 buffer inte RB6 buffer inte RB5 buffer inte	rupt errupt errupt								
	0000100 = T 0000011 = T	RB4 buffer inte RB3 buffer inte RB2 buffer inte	errupt errupt errupt								

REGISTER 20-4: CIFCTRL: ECAN™ FIFO CONTROL REGISTER

		NL. LOAN					
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DN	/IABS<2:0>		—	_	_		_
bit 15					·	·	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		—			FSA<4:0>		
bit 7							bit 0
		0 11/1				••	
0			bit, but only '0'				
R = Readable bit W = Writable					mented bit, rea		
-n = Value at POR '1' = Bit is se			t	'0' = Bit is cle	eared	x = Bit is unknown	
1 1 0 0 0 0 0 0	01 = 24 buff 00 = 16 buff 11 = 12 buff 10 = 8 buffe 01 = 6 buffe 00 = 4 buffe	red iers in DMA R iers in DMA R iers in DMA R iers in DMA RA rs in DMA RA rs in DMA RA rs in DMA RA ted: Read as	AM AM AM M M M				
bit 4-0 F	SA<4:0>: FI	FO Area Start	s with Buffer bit	s			
		d buffer RB31 d buffer RB30					
•							
•							

•
00001 = Tx/Rx buffer TRB1

00000 = Tx/Rx buffer TRB0

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_				FBF	P<5:0>		
bit 15		-					bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
					B<5:0>	110	
bit 7							bit (
Legend:		C = Writable t	pit. but only '0'	can be writter	n to clear the	bit	
R = Readab	le bit	W = Writable		U = Unimpler			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
	000000 =	TRB1 buffer TRB0 buffer					
bit 7-6	-	ented: Read as '					
bit 5-0	011111 = F 011110 = F •	>: FIFO Next Rea RB31 buffer RB30 buffer IRB1 buffer	d Buffer Poin	ter bits			

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
		TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15	·	·					bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit (
Legend:		C = Writable	bit, but only 'C)' can be writter	n to clear the bit	t	
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13	1 = Transmit	smitter in Error tter is in Bus Off tter is not in Bus	state	bit			
bit 12	TXBP : Trans 1 = Transmit	smitter in Error s tter is in Bus Pa tter is not in Bus	State Bus Pas ssive state				
bit 11	RXBP : Receive	eiver in Error Sta r is in Bus Passi r is not in Bus P	ate Bus Passivi ive state				
bit 10	1 = Transmit	ansmitter in Erro tter is in Error W tter is not in Erro	arning state	•			
bit 9	1 = Receive	ceiver in Error S r is in Error War r is not in Error V	ning state				
bit 8	1 = Transmit	ansmitter or Rec tter or Receiver tter or Receiver	is in Error Sta	ite Warning stat	te		
bit 7	1 = Interrupt	d Message Rec Request has of Request has no	ccurred	ot Flag bit			
bit 6	1 = Interrupt	Wake-up Activi Request has of Request has no	courred	ag bit			
bit 5	1 = Interrupt	r Interrupt Flag Request has of Request has n	ccurred	ources in CilNT	F<13:8> regist	er)	
bit 4	Unimpleme	nted: Read as '	0'				
bit 3		O Almost Full In Request has o		it			
bit 2	RBOVIF: RX	Request has no K Buffer Overflow Request has o	w Interrupt Fla	ag bit			
bit 1	0 = Interrupt RBIF : RX B	Request has not first fi	ot occurred ag bit				
bit 0	0 = Interrupt TBIF : TX Bu	Request has on Request has no iffer Interrupt Fla Request has on	ot occurred ag bit				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	_	_	_	_						
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE				
bit 7							bit				
Legend:		C = Writable	bit, but only '()' can be writter	to clear the bit						
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-8		nted: Read as '									
bit 7	IVRIE: Invalio										
		Request Enabl									
L:1 C		Request not er		laa hit							
bit 6		NAKIE : Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request Enabled									
	0 = Interrupt Request not enabled										
bit 5	•	Interrupt Enab									
		Request Enabl									
	0 = Interrupt Request not enabled										
bit 4	Unimplemen	nted: Read as '	0'								
bit 3	FIFOIE: FIFO	Almost Full In	terrupt Enabl	e bit							
		1 = Interrupt Request Enabled									
		Request not er									
bit 2		Buffer Overflo		hable bit							
		Request Enabl Request not er									
bit 1		Iffer Interrupt E									
		Request Enabl									
		Request not er									
	•	•									
bit 0	IBIE: IX BUT	ffer Interrupt Er	iable bit								
bit 0		ffer Interrupt Er Request Enabl									

REGISTER 20-8: CIEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

	-		-	-				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			TERRC	CNT<7:0>				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			RERRC	CNT<7:0>				
bit 7							bit 0	
Legend:		C = Writable bit	, but only 'C)' can be written to	clear the b	bit		
R = Readable b	oit	W = Writable bit	t	U = Unimplemen	ited bit, rea	ad as '0'		
-n = Value at PO	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 20-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—				—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SJW	<1:0>		BRP<5:0>					
bit 7			b					

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x Tq
	10 = Length is 3 x TQ
	01 = Length is 2 x TQ
	00 = Length is 1 x TQ
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits
	11 1111 = TQ = 2 x 64 x 1/FCAN
	•
	•
	•
	00 0010 = Tq = 2 x 3 x 1/Fcan
	00 0001 = Tq = 2 x 2 x 1/FCAN
	00 0000 = Tq = 2 x 1 x 1/FCAN

© 2008 Microchip Technology Inc.

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x		
_	WAKFIL	—	—	_		SEG2PH<2:0>			
bit 15							bit		
-	— 444		-						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SEG2PHTS	SAM		SEG1PH<2:0>			PRSEG<2:0>			
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	e bit	U = Unimple	mented bit, re	ad as '0'			
-n = Value at F	POR	'1' = Bit is se	et	'0' = Bit is cl	eared	x = Bit is unkno	own		
bit 15	-	nted: Read as							
bit 14			_ine Filter for W	ake-up bit					
		bus line filter							
			t used for wake	e-up					
bit 13-11	-	nted: Read as							
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits								
	111 = Length is 8 x To								
	•								
	•								
	•								
L:1 7	000 = Length		ant O Time Colo	at la :t					
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit								
	 Freely programmable Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 								
bit 6					g mile (ii 1),	whichever is great	-		
bit o	SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point								
	0 = Bus line is sampled once at the sample point								
bit 5-3		0>: Phase Seg	=						
	111 = Length is 8 x Tq								
	•								
	•								
	•								
	000 = Length	n is 1 x Tq							
bit 2-0	PRSEG<2:0	>: Propagation	Time Segment	bits					
	111 = Length		0						
	•								
	•								
	•								
	000 = Length	n is 1 x Tq							
	0								

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend: C = Writable bit, but only '0' can be written to clear the bit							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			

'0' = Bit is cleared

x = Bit is unknown

bit	15-0
-----	------

-n = Value at POR

FLTENn: Enable Filter n to Accept Messages bits

'1' = Bit is set

1 = Enable Filter n

0 = Disable Filter n

REGISTER 20-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BP<	<3:0>			F2BP	<3:0>	
bit 15				k			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F1BP<	<3:0>			F0BP<3:0>		
bit 7							bit 0

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-12	F3BP<3:0>: RX Buffer mask for Filter 3 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	•
	•
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F2BP<3:0>: RX Buffer mask for Filter 2 (same values as bit 15-12)
bit 7-4	F1BP<3:0>: RX Buffer mask for Filter 1 (same values as bit 15-12)
bit 3-0	F0BP<3:0>: RX Buffer mask for Filter 0 (same values as bit 15-12)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.00-0		P<3:0>	10.00-0	10,00-0		P<3:0>	10,00-0		
	F/DF	~3.0>			FODF	<3.0>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F5BF	P<3:0>			F4BF	P<3:0>			
bit 7				•			bit 0		
Legend:		C = Writable	bit, but only '0	' can be written	to clear the bi	t			
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-12	F7BP<3:0>: RX Buffer mask for Filter 7								
	1111 = Filter hits received in RX FIFO buffer								
	1110 = Filter hits received in RX Buffer 14								
	•								
	•								
	•								
		r hits received in							
	0000 = Filte	r hits received in	n RX Buffer 0						
bit 11-8	F6BP<3:0>:	RX Buffer mas	k for Filter 6 (s	ame values as	bit 15-12)				
bit 7-4	F5BP<3:0>:	F5BP<3:0>: RX Buffer mask for Filter 5 (same values as bit 15-12)							

REGISTER 20-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

bit 3-0 **F4BP<3:0>:** RX Buffer mask for Filter 4 (same values as bit 15-12)

REGISTER 20-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

bit 15 R/W-0 R/ bit 7 Legend: R = Readable bit -n = Value at POR bit 15-12 F11B 1111 1110 • • • • • • • •									
R/W-0 R/ bit 7 Image: Constraint of the second se	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
R/W-0 R/ bit 7	F11BP<	<3:0>		F10BP<3:0>					
bit 7 Legend: R = Readable bit -n = Value at POR bit 15-12 F11B 1111 1110 • • • 0001 0000							bit 8		
bit 7 Legend: R = Readable bit -n = Value at POR bit 15-12 F11B 1111 1110 • • • 0001 0000									
Legend: R = Readable bit -n = Value at POR bit 15-12 F11B 1111 1110 • • • 0001 0000	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
Legend: R = Readable bit -n = Value at POR bit 15-12 F11B 1111 1110 • • • 0001 0000	F9BP<	3:0>			F8BI	><3:0>			
R = Readable bit -n = Value at POR bit 15-12 F11B 1111 1110 •							bit 0		
R = Readable bit -n = Value at POR bit 15-12 F11B 1111 1110 •									
-n = Value at POR bit 15-12 F11B 1111 1110 • • • • 0001 0000		C = Writable	bit, but only 'C	' can be written	to clear the b	it			
bit 15-12 F11B 1111 1110 • • • • 0001 0000		W = Writable	bit	U = Unimplen	U = Unimplemented bit, read as '0'				
1111 1110 • • • • 0001 0000		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
	F11BP<3:0>: RX Buffer mask for Filter 11 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0								
) (same values same values as					
			-	same values as	-				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F15BF	°<3:0>		F14BP<3:0>						
bit 15	it 15						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F13BP<3:0>				F12B	P<3:0>				
bit 7							bit 0			
Legend:		C = Writable	bit, but only '0	' can be written	n to clear the bi	t				
R = Readab	= Readable bit W = Writable bit			U = Unimplen	nented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-12	F15BP<3:0>	: RX Buffer ma	sk for Filter 18	5						
	1111 = Filter hits received in RX FIFO buffer									
	1110 = Filter	1110 = Filter hits received in RX Buffer 14								
	•									
	•									

REGISTER 20-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

F14BP<3:0>: RX Buffer mask for Filter 14 (same values as bit 15-12)

F13BP<3:0>: RX Buffer mask for Filter 13 (same values as bit 15-12)

F12BP<3:0>: RX Buffer mask for Filter 12 (same values as bit 15-12)

٠

bit 11-8

bit 7-4

bit 3-0

0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	EXIDE	—	EID17	EID16
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0	' can be writter	n to clear the bi	t	
R = Readable	e bit	W = Writable I	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-5	1 = Message 0 = Message	Standard Identifi address bit SIE address bit SIE	Ox must be '1 Ox must be '0				
bit 4	-	ited: Read as '0					
bit 3	EXIDE: Exter	nded Identifier E	Enable bit				
	If MIDE = 1 t	nen:					
	1 = Match only messages with extended identifier addresses						

0 = Match only messages with standard identifier addresses

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

If MIDE = 0 then: Ignore EXIDE bit.

Unimplemented: Read as '0'

EID<17:16>: Extended Identifier bits

bit 2

bit 1-0

REGISTER 20-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

REGISTER 20-17:	CIRXFnEID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER
	n (n = 0-15)

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 20-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK<1:0>		F6MSK<1:0>		F5MSK<1:0>		F4MSK<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MSK<1:0> F2MSK<1:0>		F1MS	K<1:0>	F0MSł	<<1:0>		
bit 7							bit 0

Legend:	C = Writable bit, but on	ly '0' can be written to clear t	he bit
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	F7MSK<1:0>: Mask Source for Filter 7 bit 11 = No mask 10 = Acceptance Mask 2 registers contain mask
	01 = Acceptance Mask 2 registers contain mask
	00 = Acceptance Mask 0 registers contain mask
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
bit 1-0	FOMSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

	20 10. 011 110				OLLEGHON			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15MSK<1:0>		F14MS	K<1:0>	F13M5	SK<1:0>	F12MS	SK<1:0>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	1SK<1:0>	-	K<1:0>	-	K<1:0>	-	K<1:0>	
bit 7	101(11.02	1 101010	11.02	1 51010		1 010101	bit C	
Legend:		C = Writable	bit, but only '0	' can be writter	to clear the bit			
R = Readabl	le bit	W = Writable bit		U = Unimplemented bit, read as '0		as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-14	11 = No mas 10 = Accepta 01 = Accepta	F15MSK<1:0>: Mask Source for Filter 15 bit 11 = No mask 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask						
bit 13-12	F14MSK<1:0	>: Mask Sourc	e for Filter 14	bit (same value	es as bit 15-14)			
bit 11-10	F13MSK<1:0	>: Mask Sourc	e for Filter 13	bit (same value	es as bit 15-14)			
bit 9-8	F12MSK<1:0	>: Mask Sourc	e for Filter 12	bit (same value	es as bit 15-14)			
bit 7-6	F11MSK<1:0	>: Mask Sourc	e for Filter 11	bit (same value	es as bit 15-14)			
bit 5-4	F10MSK<1:0	>: Mask Sourc	e for Filter 10	bit (same value	es as bit 15-14)			
bit 3-2	F9MSK<1:0>	·: Mask Source	for Filter 9 bi	t (same values	as bit 15-14)			
bit 1-0	F8MSK<1:0>	·: Mask Source	for Filter 8 bi	t (same values	as bit 15-14)			

REGISTER 20-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 R/W-x R/W-x U-0 R/W-x R/W-x R/W-x R/W-x R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 — MIDE — EID17 EID16	REGISTER	20-20: CiRXM REGIS	InSID: ECAN TER n (n = 0		ANCE FILTE	R MASK STA	ANDARD IDE	NTIFIER
bit 15 R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 — MIDE — EID17 EID16 bit 7	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x SID2 SID1 SID0 — MIDE — EID17 EID16 bit 7	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
SID2 SID1 SID0 — MIDE — EID17 EID16 bit 7 t t t t t t t Legend: C = Writable bit, but only '0' can be written to clear the bit U U Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison x = Bit SIDx is don't care in filter comparison bit 4 Unimplemented: Read as '0' tare in filter comparison tare in filter comparison bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match 0 = Match either standard or extended address	bit 15				·			bit 8
SID2 SID1 SID0 — MIDE — EID17 EID16 bit 7 t t t t t t t Legend: C = Writable bit, but only '0' can be written to clear the bit U U Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison x = Bit SIDx is don't care in filter comparison bit 4 Unimplemented: Read as '0' tare in filter comparison tare in filter comparison bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match 0 = Match either standard or extended address								
bit 7 the set of the	R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
Legend: C = Writable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison 0 = Bit SIDx is don't care in filter comparison bit 4 Unimplemented: Read as '0' bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filt 0 = Match either standard or extended address message if filters match	SID2	SID1	SID0		MIDE	<u> </u>	EID17	EID16
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison 0 = Bit SIDx is don't care in filter comparison bit 4 Unimplemented: Read as '0' bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison 0 = Bit SIDx is don't care in filter comparison bit 4 Unimplemented: Read as '0' bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison 0 = Bit SIDx is don't care in filter comparison bit 4 Unimplemented: Read as '0' bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match	Legend:		C = Writable	bit, but only '0	' can be writter	n to clear the bi	t	
bit 15-5 SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison 0 = Bit SIDx is don't care in filter comparison bit 4 Unimplemented: Read as '0' bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filt 0 = Match either standard or extended address message if filters match	R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
1 = Include bit SIDx in filter comparison 0 = Bit SIDx is don't care in filter comparison bit 4 Unimplemented: Read as '0' bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter or extended address message if filters match	-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 3 MIDE: Identifier Receive Mode bit 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filt 0 = Match either standard or extended address message if filters match	bit 15-5	1 = Include bi	t SIDx in filter	comparison	son			
 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filt 0 = Match either standard or extended address message if filters match 	bit 4	Unimplemen	ted: Read as '	0'				
0 = Match either standard or extended address message if filters match	bit 3	MIDE: Identif	MIDE: Identifier Receive Mode bit					
		0 = Match eit (i.e., if (F	her standard or ilter SID) = (Me	essage SID) o	dress message	e if filters match	1	DE bit in filter

- bit 2 Unimplemented: Read as '0'
- bit 1-0 EID<17:16>: Extended Identifier bits
 - 1 = Include bit EIDx in filter comparison
 - 0 = Bit EIDx is don't care in filter comparison

REGISTER 20-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0

bit 7			k	oit 0
Legend:	C = Writable bit, but or	nly '0' can be written to clear th	ne bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

bit 7

^{© 2008} Microchip Technology Inc.

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0

REGISTER 20-22: CIRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

Legend:	C = Writable bit, but only	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 20-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24
bit 15							bit 8

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16
bit 7							bit 0

Legend:	C = Writable bit, but or	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	
•	•	•	•			bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	
						bit 0	
Legend: C = Writable b		oit, but only '0'	it, but only '0' can be written to clear the bit				
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'				
	RXOVF14 R/C-0 RXOVF6	RXOVF14 RXOVF13 R/C-0 R/C-0 RXOVF6 RXOVF5 C = Writable t	RXOVF14 RXOVF13 RXOVF12 R/C-0 R/C-0 R/C-0 RXOVF6 RXOVF5 RXOVF4	RXOVF14 RXOVF13 RXOVF12 RXOVF11 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF6 RXOVF5 RXOVF4 RXOVF3 C = Writable bit, but only '0' can be written	RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 C = Writable bit, but only '0' can be written to clear the bit	RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 C = Writable bit, but only '0' can be written to clear the bit C C C C C	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 20-24: CIRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 20-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
bit 15							bit 8

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
bit 7							bit 0

Legend:	C = Writable bit, but o	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

© 2008 Microchip Technology Inc.

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPF	RI<1:0>				
bit 15	•	•					bit 8				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm		RI<1:0>				
bit 7							bit (
Legend:		C = Writable I	oit, but only '0'	can be writter	n to clear the bit						
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	Iown				
bit 15-8	See Definition	n for Bits 7-0, C	ontrols Buffer	n							
bit 7	TXENm: TX/	RX Buffer Sele	ction bit								
	1 = Buffer TR	1 = Buffer TRBn is a transmit buffer									
		Bn is a receive									
bit 6	TXABTm: Message Aborted bit ⁽¹⁾										
		 1 = Message was aborted 0 = Message completed transmission successfully 									
	•	-		•							
bit 5		TXLARBm: Message Lost Arbitration bit ⁽¹⁾									
	 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent 										
bit 4	•	 Interstage and not lose arbitration while being sent TXERRm: Error Detected During Transmission bit⁽¹⁾ 									
	1 = A bus error occurred while the message was being sent										
		0 = A bus error did not occur while the message was being sent									
bit 3		essage Send R		0	0						
		1 = Requests that a message be sent. The bit automatically clears when the message is successfull									
		0 = Clearing the bit to '0' while set requests a message abort.									
bit 2	•	uto-Remote Tra	•	•							
	1 = When a r	1 = When a remote transmit is received, TXREQ will be set									
	0 = When a r	emote transmit	is received, TX	KREQ will be	unaffected						
	TXmPRI<1:0>: Message Transmission Priority bits										
bit 1-0	11 = Highest message priority										
bit 1-0	11 = Highest	U 1									
bit 1-0	11 = Highest 10 = High inte	message prior ermediate mese ermediate mese	sage priority								

Note 1: This bit is cleared when TXREQ is set.

The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM. Note:

20.4 ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN special function registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 20-1: ECAN[™] MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	_	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	1 = Message will request remote transmission0 = Normal message
bit 0	IDE: Extended Identifier bit
	 1 = Message will transmit extended identifier 0 = Message will transmit standard identifier

BUFFER 20-2: ECAN[™] MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
_	_			EID17	EID16	EID15	EID14
bit 15				· · · · · · · · · · · · · · · · · · ·			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
bit 7							bit 0
Legend:							

R = Readable bit V	V = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR '1	1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

BUFFER 20-3	: ECAN	MESSAGE	BUFFERV	VORD Z					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1		
bit 15							bit 8		
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—		—	RB0	DLC3	DLC2	DLC1	DLC0		
bit 7							bit 0		
Legend:									
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		
bit 15-10	EID<5:0>: Ex	tended Identifie	er bits						
bit 9	RTR: Remote	Transmission	Request bit						
	1 = Message	will request rer	note transmi	ssion					
	0 = Normal m	essage							
bit 8	RB1: Reserve	ed Bit 1							
	User must set	this bit to '0' p	er CAN proto	ocol.					
bit 7-5	Unimplemen	ted: Read as ') '						
bit 4	RB0: Reserved Bit 0								

BUFFER 20-3: ECAN[™] MESSAGE BUFFER WORD 2

	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 20-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	te 0			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-8 Byte 1<15:8>: ECAN™ Message byte 0

bit 7-0 Byte 0<7:0>: ECAN Message byte 1

BUFFER 20-5: ECAN[™] MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
Byte 3										
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
Byte 2										
bit 7							bit 0			
Legend:										
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			

bit 15-8 Byte 3<15:8>: ECAN™ Message byte 3

bit 7-0 Byte 2<7:0>: ECAN Message byte 2

BUFFER 20-6: ECAN[™] MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
1\/ V/-X	IV/V-X	11/1/-X			I \/ V V-X	I \/ V V-X	I \/ V V-X
			Ву	/te 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 4			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit		U = Unimpler	nented bit, read	as '0'	

-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)

bit 15-8 **Byte 5<15:8>:** ECAN™ Message byte 5

bit 7-0 Byte 4<7:0>: ECAN Message byte 4

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

BUFFER 20-7: ECAN[™] MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	/te 7			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	/te 6			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-8 Byte 7<15:8>: ECAN™ Message byte 7

bit 7-0 Byte 6<7:0>: ECAN Message byte 6

BUFFER 20-8: ECAN[™] MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
0-0	0-0	0-0	r///-X	r///-x			r/w-x
	—	—			FILHIT<4:0>(1))	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—		—	—	—	
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

21.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC1)

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04. and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", "Section 16. Analogto-Digital Converter (ADC)" (DS70183), which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 devices have up to 9 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

21.1 Key Features

The 10-bit ADC configuration has the following key features:

- · Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to nine analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- · Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

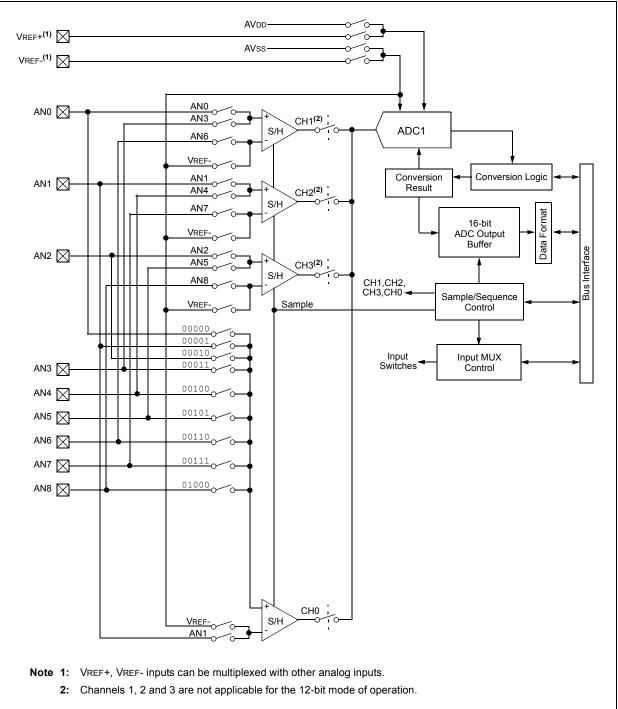
Depending on the particular device pinout, the ADC can have up to nine analog input pins, designated AN0 through AN8. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 21-1 and Figure 21-2.

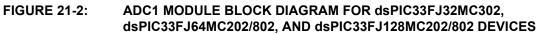
21.2 ADC Initialization

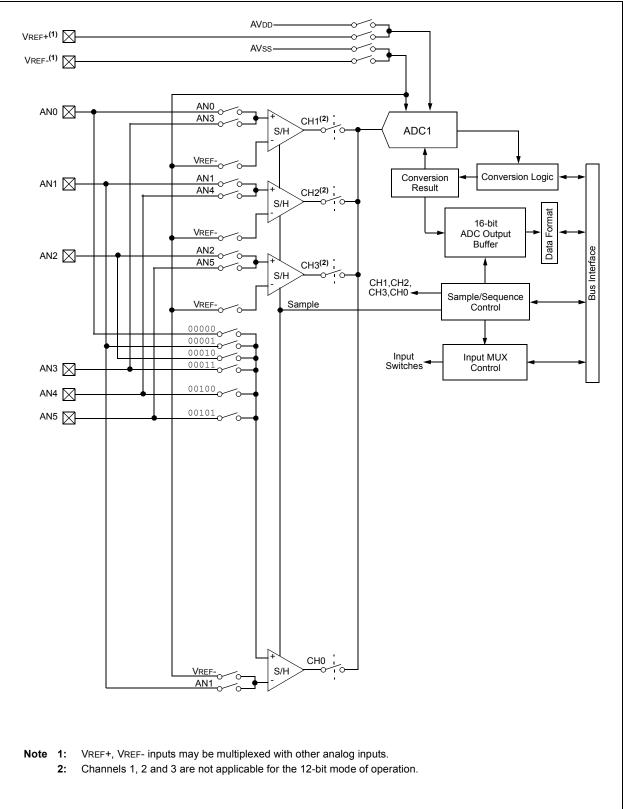
The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels is used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority


21.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.


The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.


The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA standalone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

^{© 2008} Microchip Technology Inc.

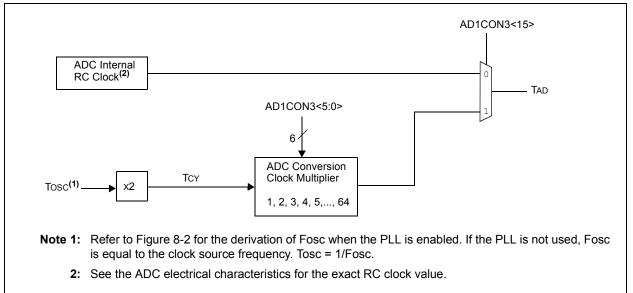


FIGURE 21-1: ADC MODULE BLOCK DIAGRAM

FIGURE 21-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
ADON		ADSIDL	ADDMABM	_	AD12B	FORM	/<1:0>				
bit 15					•		bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0				
-	-	-		-	-	HC,HS	HC, HS				
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE				
bit 7							bit C				
Legend:		HC = Cleared	l by hardware	HS = Set by	hardware						
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 15		Operating Mo	de hit								
	1 = ADC mc	odule is operati									
	0 = ADC is c										
bit 14	-	nted: Read as									
bit 13		p in Idle Mode									
			eration when de ation in Idle mod		dle mode						
bit 12		DMA Buffer B									
	1 = DMA bu	1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer.									
	0 = DMA bu	ffers are writte	e as the addres n in Scatter/Gat ased on the inde	her mode. Th	e module provi	ides a scatter/g	ather address				
bit 11		nted: Read as			0						
bit 10	AD12B: 10-b	oit or 12-bit Ope	eration Mode bit	t							
		-channel ADC -channel ADC	•								
bit 9-8	FORM<1:0>	: Data Output F	Format bits								
	<u>For 10-bit op</u>										
			T = sddd dddd), where s =.N0	OT.d<9>)					
	01 = Signed	integer (DOUT	dd dddd dd0(=ssss sssd 00dd dddd	dddd dddd,	where $s = .NO^{-1}$	T.d<9>)					
	00 = Integer (Dout = 0000 00dd dddd dddd) For 12-bit operation:										
		11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)									
		•	dd dddd dddo	,		T 1 (44)					
	01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd)										
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits										
		-	s sampling and s		ion (auto-conve	ert)					
	110 = Reser				,	,					
			interval ends s								
			ADC1) compare interval ends s								
			ADC1) compare								
	001 = Active	transition on II	NT pin ends sar	npling and sta	irts conversion						
		•	ends sampling a	nd starts conv	ersion						
bit 4	Unimplemer	nted: Read as	'0'								

REGISTER 21-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit 1 = ADC conversion cycle is completed.
	0 = ADC conversion not started or in progress
	Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
	VCFG<2:0>		—		CSCNA	CHPS	S<1:0>			
bit 15							bit 8			
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	—		SMPI	<3:0>		BUFM	ALTS			
bit 7							bit (
Legend:										
R = Readable		W = Writable		•	mented bit, rea					
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkı	nown			
1.1.45.40					1.11.					
bit 15-13	VCFG<2:0>:	Converter vo	tage Reference		DITS					
	A	DREF+	ADREF-							
	000	Avdd	Avss							
		rnal VREF+	Avss	_						
		AVDD	External VREF-	_						
		rnal VREF+	External VREF-	_						
		AVDD	Avss							
bit 12-11	Unimplemen									
bit 10	CSCNA: Scan Input Selections for CH0+ during Sample A bit 1 = Scan inputs									
	1 = Scan inp 0 = Do not so									
bit 9-8	CHPS<1:0>: Selects Channels Utilized bits									
			1:0> is: U-0, Un	implemented	d, Read as '0'					
	1x =Converts	6 CH0, CH1, C	H2 and CH3		,					
	01 =Converts		1							
bit 7	00 =Converts		(anly valid when							
			(only valid when buffer 0x8-0xF, ι		ccess data in 0	v0_0v7				
			buffer 0x0-0x7, t							
bit 6	Unimplemen									
bit 5-2	SMPI<3:0>: S	Selects Incren	nent Rate for DM	A Addresses	bits or number	of sample/conv	version			
	SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion operations per interrupt.									
			A address or ge	nerates interi	rupt after comp	letion of every	16th sample			
		ersion operation nents the DM	A address or ge	nerates interi	rupt after comp	letion of everv	15th sample			
		ersion operation	-							
	•									
	•									
			A address after c A address after c							
	BUFM: Buffer			-		•				
bit 1	1 — Charta hu	ffor filling of o	ddress 0x0 on fir	st interrupt ar	nd 0x8 on next	interrupt				
bit 1										
bit 1	0 = Always s	tarts filling but	fer at address 0>							
bit 1 bit 0	0 = Always s ALTS: Alterna	tarts filling but ate Input Sam		bit						

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	_			SAMC<4:0>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS	6<7:0>			
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkı	nown
bit 14-13 bit 12-8	Unimplement	ived from syste ted: Read as ' Auto Sample T AD)'				
bit 7-0	11111111 = - • • • • • •	D ADC Conversion TCY · (ADCS< TCY · (ADCS< TCY · (ADCS<	7:0> + 1) = 25 7:0> + 1) = 3 7:0> + 1) = 2	6 · TCY = TAD · TCY = TAD · TCY = TAD			

REGISTER 21-3: AD1CON3: ADC1 CONTROL REGISTER 3

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_		_	_		
bit 15		·		·	·		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_	—		—		DMABL<2:0>	
bit 7				·			bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared x = Bit is unknown		

REGISTER 21-4: AD1CON4: ADC1 CONTROL REGISTER 4

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

Olo = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

^{© 2008} Microchip Technology Inc.

	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	_	—	_	CH123N	IB<1:0>	CH123SB
pit 15					L		bit
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_			—		CH123N	IA<1:0>	CH123SA
pit 7							bit
.egend: R = Readable	a hit		ait	II – Unimploi	monted hit read	1 00 '0'	
n = Value at		W = Writable I '1' = Bit is set	DIL	-	mented bit, read		
n = value at	PUR	i = Bit is set		'0' = Bit is cle	areo	x = Bit is unk	known
		nted: Deed ee '	、				
oit 15-11	-	nted: Read as '(
it 10-9		1:0>: Channel 1,	-	-	-		
		32MC302, dsPIC	33FJ64MC20	02/802, and ds	PIC33FJ128M	C202/802 dev	ices only:
	<u>If AD12B = 1</u>						
	11 = Reserv						
	10 = Reserv						
	01 = Reserv						
	00 = Reserv	ed					
	<u>If AD12B = (</u>):					
	11 = Reserv						
	10 = Reserv	red					
	01 = CH1, C	H2, CH3 negativ	/e input is VR	EF-			
	00 = CH1 , C	CH2, CH3 negativ	ve input is VR	EF-			
	dsPIC33FJ3	32MC304, dsPIC	33F.I64MC20		DIC33E 1128M	C204/804 dev	ices only:
)4/804, and ds			
	If AD12B = 3	1:	001004111020)4/804, and ds	F10551 5120100		ices only.
	<u>If AD12B = 1</u> 11 = Reserv)4/804, and ds	F10331 3 12010		ices only.
		red		04/804, and ds	F10331 3 120m		ices only.
	11 = Reserv	ved ved		04/804, and ds	F10351 3 120m		ices only.
	11 = Reserv 10 = Reserv	red red red		04/804, and ds	F 16331 3 120m		ices only.
	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv	red red red red		04/804, and ds	F 16331 3 120m		ices only.
	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv If AD12B = 0	red red red 2:		04/804, and ds	F 16331 3 120m		ices only.
	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv <u>If AD12B = (</u> 11 = Reserv	red red red <u>2:</u> red					
	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv <u>If AD12B = (</u> 11 = Reserv 10 = CH1 ne	red red red 2:	.N6, CH2 neg	ative input is A			
	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv <u>If AD12B = 0</u> 11 = Reserv 10 = CH1 ne 01 = CH1, C	red red red <u>2:</u> red egative input is A	.N6, CH2 neg. ve input is VRt	ative input is A _{EF-}			
bit 8	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv If AD12B = (11 = Reserv 10 = CH1 ne 01 = CH1, C 00 = CH1, C	red red 2: 2: red egative input is A CH2, CH3 negative	N6, CH2 neg ve input is VRi ve input is VRi	ative input is A ^{EF-}	N7, CH3 negati		
oit 8	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv If AD12B = (11 = Reserv 10 = CH1 ne 01 = CH1, C 00 = CH1, C	red red red 2: red egative input is A CH2, CH3 negativ CH2, CH3 negativ Channel 1, 2, 3 F	N6, CH2 neg ve input is VRi ve input is VRi	ative input is A ^{EF-}	N7, CH3 negati		
oit 8	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv <u>If AD12B = (</u> 11 = Reserv 10 = CH1 ne 01 = CH1, C 00 = CH1, C CH123SB: (red red red 2: red egative input is A CH2, CH3 negativ CH2, CH3 negativ Channel 1, 2, 3 F 1:	N6, CH2 neg ve input is VRi ve input is VRi	ative input is A ^{EF-}	N7, CH3 negati		
iit 8	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv <u>If AD12B = (</u> 11 = Reserv 10 = CH1 ne 01 = CH1, C 00 = CH1, C CH123SB: (<u>If AD12B = (</u>	red red red 2: red egative input is A 2H2, CH3 negativ 2H2, CH3 negativ 2H2, CH3 negativ 2H2, CH3 negativ 2H2, CH3 negativ 2H2, CH3 negativ	N6, CH2 neg ve input is VRi ve input is VRi	ative input is A ^{EF-}	N7, CH3 negati		
pit 8	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv <u>If AD12B = 0</u> 11 = Reserv 10 = CH1 ne 01 = CH1, C 00 = CH1, C CH123SB: (<u>If AD12B = 1</u> 1 = Reserve 0 = Reserve	red red red 2: red egative input is A 2H2, CH3 negative 2H2, CH3 negative 2H3, CH3 negative 2H3, CH3 negative 2H3, CH3 negative 2H4, CH3 n	N6, CH2 neg ve input is VRi ve input is VRi	ative input is A ^{EF-}	N7, CH3 negati		
pit 8	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv 11 = Reserv 10 = CH1 ne 01 = CH1, C 00 = CH1, C CH123SB: C If AD12B = C 1 = Reserve 0 = Reserve If AD12B = C	red red red 2: red egative input is A CH2, CH3 negative CH2, CH3 negative Channel 1, 2, 3 F 1: rd rd	N6, CH2 neg ve input is VR ve input is VR Positive Input S	ative input is A EF- EF- Select for Sam	N7, CH3 negati ole B bit	ve input is AN	
pit 8	11 = Reserv 10 = Reserv 01 = Reserv 00 = Reserv 11 = Reserv 10 = CH1 ne 01 = CH1, C 00 = CH1, C CH123SB: (If AD12B = 1 1 = Reserve 0 = Reserve 1 = CH1 pos	red red red 2: red egative input is A 2H2, CH3 negative 2H2, CH3 negative 2H3, CH3 negative 2H3, CH3 negative 2H3, CH3 negative 2H4, CH3 n	N6, CH2 neg ve input is VR ve input is VR Positive Input S 3, CH2 positiv	ative input is A _{EF-} Select for Sam re input is AN4,	N7, CH3 negati ple B bit CH3 positive ir	ve input is AN 1put is AN5	

REGISTER 21-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)

bit 2-1

CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits dsPIC33FJ32MC302, dsPIC33FJ64MC202/802, and dsPIC33FJ128MC202/802 devices only: If AD12B = 1:

- 11 = Reserved
- 10 = Reserved
- 01 = Reserved
- 00 = Reserved

If AD12B = 0:

- 11 = Reserved
- 10 = Reserved
- 01 = CH1, CH2, CH3 negative input is VREF-
- 00 = CH1, CH2, CH3 negative input is VREF-

dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: If AD12B = 1:

- 11 = Reserved
- 10 = Reserved 01 = Reserved
- 00 = Reserved

If AD12B = 0:

- 11 = Reserved
- 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8
- 01 = CH1, CH2, CH3 negative input is VREF-
- 00 = CH1, CH2, CH3 negative input is VREF-

bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit

<u>If AD12B = 1</u>:

- 1 = Reserved
- 0 = Reserved

If AD12B = 0:

- 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5
- 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

R/W-0 U-0 U-0 R/W-0 R/W	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-0 U-0 U-0 R/W-0 R/W	CH0NB	—	—			CH0SB<4:0>		
CH0NA - - CH0SA<4:0> bit 7 bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CH0NB: Channel 0 Negative Input Select for Sample B bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF- bit 14-13 Unimplemented: Read as '0' CH0SB CH0SB Channel 0 Positive Input Select for Sample B bits dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: 01000 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 000011 = Channel 0 positive	bit 15							bit
CH0NA - - CH0SA<4:0> bit 7 bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CH0NB: Channel 0 Negative Input Select for Sample B bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF- bit 14-13 Unimplemented: Read as '0' CH0SB CH0SB Channel 0 Positive Input Select for Sample B bits dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: 01000 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 000011 = Channel 0 positive	R/W-0	LI-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 bi Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHONB: Channel 0 Negative Input Select for Sample B bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF- bit 14-13 Unimplemented: Read as '0' bit 12-8 CHOSB CHOSB dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: 01000 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 0 = Othannel 0 positive input is AN1 0 = Channel 0 positive input is AN2 00010 = Channel 0 positive input is AN2 00010 = Channel 0 positive input is AN2 00010 = Channel 0 positive input is AN1 0 = Othannel 0 positive input is AN0 dsPIC33FJ32MC302, dsPIC33FJ64MC202/802, and dsPIC33FJ128MC202/802 devices only: 00101 = Channel 0 positive input is AN0 dsPIC33FJ32MC302, dsPIC33FJ64MC202/802, and dsPIC33FJ128MC202/802 devices only: 00101 = Channel 0 positive input is AN0 dsPIC33FJ32MC302, dsPIC33FJ64MC202/802, and dsPIC33FJ128MC202/802 devices only: 00101 = Channel 0 positive input is AN0 dsPIC33FJ32MC302 dsPIC33FJ64MC202/802, and dsPIC33FJ128MC202/802 devices only: 00101 = Channel 0 positive input is AN0 bit 7 CHONA: Channel 0 positive input is AN0. bit 7 CHONA: Channel 0 positive input is AN1 0 = Channel 0 negative input is VREF- bit 1 = Channel 0 negative input is VREF- bit 1 = Channel 0 negative input is VREF- bit 1 = Channel 0 negative input is VREF- bit 1 = Channel 0 negative input is VREF- bit 1 = Channel 0 negative input is VREF- bit 1 = Channel 0 negative input is VREF- bit 7 CHONA: Channel 0 negative input is VREF- bit 7 CHONA: Channel 0 negative input is VREF- bit 7 CHONA: Channel 0 negative input is VREF- bit 7 CHONA: Channel 0 negative input is VREF- bit 7 CHONA: Channel 0 negative input is VREF- bit 7 CHONA: Channel 0 negative input SVEF- bit 7 CHONA: Channel 0 negative input is VREF- bit 7 CHONA: Channel 0 negative input is VREF- bit 7 CHONA: Cha					1010 0	-	1010 0	1010 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHONB: Channel 0 Negative Input Select for Sample B bit 1 = Channel 0 negative input is VREF- bit 14-13 Unimplemented: Read as '0' Et as '0' bit 12-8 CHOSB CHOSB cHouse CHOSB Chouse 10 Positive Input Select for Sample B bits dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: 01000 = Channel 0 positive input is AN8 · · · · 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 · 00101 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 · · · · · · · · · · · · · · · · · · · · · · · · · <	bit 7							bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHONB: Channel 0 Negative Input Select for Sample B bit 1 = Channel 0 negative input is VREF- bit 14-13 Unimplemented: Read as '0' Et as '0' bit 12-8 CHOSB CHOSB cHouse CHOSB Chouse 10 Positive Input Select for Sample B bits dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: 01000 = Channel 0 positive input is AN8 · · · · 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 00010 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 · 00101 = Channel 0 positive input is AN1 00001 = Channel 0 positive input is AN1 · · · · · · · · · · · · · · · · · · · · · · · · · <								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHONB: Channel 0 Negative Input Select for Sample B bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF- bit 14-13 Unimplemented: Read as '0' CHONSE CHOSE CHOSE bit 12-8 CHOSE CHOSE Channel 0 Positive Input Select for Sample B bits dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: 01000 = Channel 0 positive input is AN8 	•							
bit 15 CHONE: Channel 0 Negative Input Select for Sample B bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF- bit 14-13 Unimplemented: Read as '0' CHOSE<4:0>: Channel 0 Positive Input Select for Sample B bits dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: 01000 = Channel 0 positive input is AN8 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0 dsPIC33FJ32MC302, dsPIC33FJ64MC202/802, and dsPIC33FJ128MC202/802 devices only: 00101 = Channel 0 positive input is AN5 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN5 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00000 = Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 Negative input is AN1 0 = Channel 0 negative input is VREF-				bit	•			
<pre>1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF- bit 14-13 Unimplemented: Read as '0' bit 12-8 CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: 01000 = Channel 0 positive input is AN8</pre>	-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only: 01000 = Channel 0 positive input is AN8 .	bit 14-13							
 . /ul>	bit 14-13 bit 12-8	Unimplemen CH0SB<4:0> dsPIC33FJ32	ted: Read as 'o : Channel 0 Po MC304, dsPIC)' sitive Input Se :33FJ64MC20	•		C204/804 devi	ces only:
 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0 dsPIC33FJ32MC302, dsPIC33FJ64MC202/802, and dsPIC33FJ128MC202/802 devices only: 00101 = Channel 0 positive input is AN5 . . 00010 = Channel 0 positive input is AN2 00011 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 		•						
 00101 = Channel 0 positive input is AN5 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0. bit 7 CH0NA: Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF- 		00001 = Cha	nnel 0 positive	input is AN1				
00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0. bit 7 CH0NA: Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF-					2/802, and dsl	PIC33FJ128M(C202/802 devi	ces only:
 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF- 		00001 = Cha	nnel 0 positive	input is AN1				
bit 6-5 Unimplemented: Read as '0'	bit 7	1 = Channel () negative inpu	t is AN1	for Sample A bi	it		
	bit 6-5	Unimplemen	ted: Read as ')'				

REGISTER 21-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

REGISTER 21-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

```
bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits

dsPIC33FJ32MC304, dsPIC33FJ64MC204/804, and dsPIC33FJ128MC204/804 devices only:

01000 = Channel 0 positive input is AN8

.

00010 = Channel 0 positive input is AN2

00001 = Channel 0 positive input is AN1

00000 = Channel 0 positive input is AN0

dsPIC33FJ32MC302, dsPIC33FJ64MC202/802, and dsPIC33FJ128MC202/802 devices only:

00101 = Channel 0 positive input is AN5

.
```

00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—		—	_	_	CSS8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7						·	bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown		nown			

REGISTER 21-7: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW⁽¹⁾

bit 15-9 Unimplemented: Read as '0'

bit 8-0 CSS<8:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

Note 1: On devices without nine analog inputs, all AD1CSSL bits can be selected by user application. However, inputs selected for scan without a corresponding input on device converts ADREF-.

REGISTER 21-8: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PCFG8
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

PCFG<8:0>: ADC Port Configuration Control bits

- 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVss
 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On devices without nine analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.

bit 8-0

22.0 AUDIO DIGITAL-TO-ANALOG CONVERTER (DAC)

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04. and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 33. Audio Digital-to-Analog Converter (DAC)" (DS70211), which is available from the Microchip website (www.microchip.com).

The Audio Digital-to-Analog Converter (DAC) module is a 16-bit Delta-Sigma signal converter designed for audio applications. It has two output channels, left and right to support stereo applications. Each DAC output channel provides three voltage outputs, positive DAC output, negative DAC output, and the midpoint voltage output for the dsPIC33FJ64MC804 and dsPIC33FJ128MC804 devices. The dsPIC33FJ64MC802 dsPIC33FJ128MC802 and devices provide positive DAC output and negative DAC output voltages. The positive and negative DAC outputs are differential about a midpoint voltage of approximately 1.65 volts to drive the speakers with a Bridge-Tied Load (BTL) configuration.

22.1 KEY FEATURES

- 16-bit resolution (14-bit accuracy)
- Second-Order Digital Delta-Sigma Modulator
- 256 X Over-Sampling Ratio
- 128-Tap FIR Current-Steering Analog Reconstruction Filter
- 100 KSPS Maximum Sampling Rate
- User controllable Sample Clock
- Input Frequency 45 kHz max
- Differential Analog Outputs
- Signal-To-Noise: 90 dB
- 4-deep input Buffer
- 16-bit Processor I/O, and DMA interfaces

22.2 DAC Module Operation

The functional block diagram of the Audio DAC module is shown in Figure 22-1. The Audio DAC module provides a 4-deep data input FIFO buffer for each output channel. If the DMA module and/or the processor cannot provide output data in a timely manner, and the FIFO becomes empty, the DAC accepts data from the DAC Default Data register (DACDFLT). This safety feature is useful for industrial control applications where the DAC output controls an important processor or machinery. The DACDFLT register should be initialized with a "safe" output value. Often the safe output value is either the midpoint value (0x8000) or a zero value (0x0000).

The digital interpolator up-samples the input signals, where the over-sampling ratio is 256x which creates data points between the user supplied data points. The interpolator also includes processing by digital filters to provide "noise shaping" to move the converter noise above 20 kHZ (upper limit of the pass band). The output of the interpolator drives the Sigma-Delta modulator. The serial data bit stream from the Sigma-Delta modulator is processed by the reconstruction filter. The differential outputs of the reconstruction filter are amplified by Op Amps to provide the required 2 volts peak-to-peak voltage swing into a 1 kOhm load.

22.3 DAC Output Format

The DAC output data stream can be in a two's complement signed number format or as an unsigned number format.

The Audio DAC module features the ability to accept the 16-bit input data in a two's complement signed number format or as an unsigned number format. The data formatting is controlled by the Data Format Control (FORM<8>) bit in the DAC1CON register. The supported formats are:

- 1 = Signed (two's complement)
- 0 = Unsigned

If the FORM bit is configured for "Unsigned data" then the user input data yields the following behavior:

- 0xFFFF = most positive output voltage
- 0x8000 = mid point output voltage
- 0x7FFF = a value just below the midpoint
- 0x0000 = minimum output voltage

If the FORM bit is configured for "signed data" then the user input data yields the following behavior:

- 0x7FFF = most positive output voltage
- 0x0000 = mid point output voltage
- 0xFFFF = value just below the midpoint
- 0x8000 = minimum output voltage

The Audio DAC provides an analog output proportional to the digital input value. The maximum 100,000 samples per second (100ksps) update rate provides good quality audio reproduction.

The Audio DAC provides differential Analog outputs whose common mode output voltage is a nominal 1.65 volts with a supply voltage of 3.3 volts. The voltage swing is approximately \pm 1 volt about the 1.65 volt midpoint or approximately 0.65 volts to 2.65 volts into a 1 kOhm load.

© 2008 Microchip Technology Inc.

22.4 DAC CLOCK

The DAC clock signal clocks the internal logic of the Audio DAC module. The data sample rate of the Audio DAC is an integer division of the rate of the DAC clock. The DAC clock is generated via a clock divider circuit that accepts an auxiliary clock from the auxiliary oscillator. The divisor ratio is programmed by clock divider bits (DACFDIV<6:0>) in the DAC Control register (DAC1CON). The resulting DAC clock must not exceed 25.6 MHz. If lower sample rates are to be used, then the DAC filter clock frequency may be reduced to reduce power consumption. The DAC clock frequency is 256 times the sampling frequency.

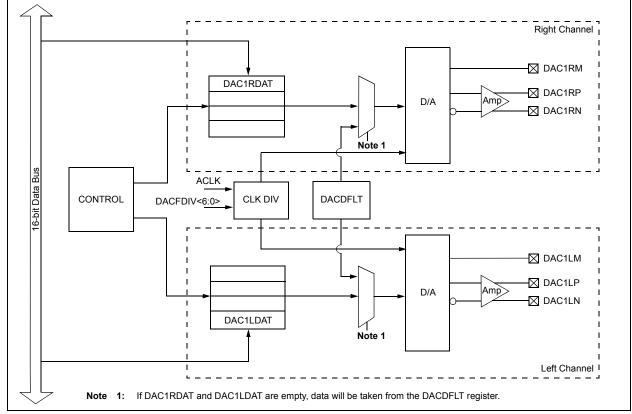
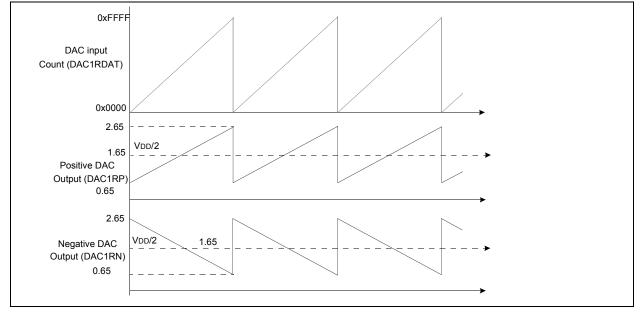



FIGURE 22-2: AUDIO DAC OUTPUT FOR RAMP INPUT (UNSIGNED)

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
DACEN		DACSIDL	AMPON	_		_	FORM
it 15		·					bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
_				DACFDIV<6:0)>		
it 7							bit 0
egend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
it 15		C1 Enable bit					
	1 = Enables						
	0 = Disables						
it 14	Unimplemer	nted: Read as '	D'				
it 13	DACSIDL: S	top in Ideal Mod	le bit				
	1 = Discontin	ue module ope	ration when o	device enters Id	le mode		
	0 = Continue	module operat	on in Idle mo	ode.			
it 12	AMPON: Ena	able Analog Ou	tput Amplifier	in Sleep Mode	/Stop-in Idle Mo	ode	
		Output Amplifier Output Amplifier					
it 11-9	Unimplemer	nted: Read as '	o'				
it 8	FORM: Data	Format Select	bit				
	1 = Signed in 0 = Unsigned						
it 7	Unimplemer	nted: Read as '	o'				
it 6-0	DACFDIV<6	:0>: DAC Clock	Divider.				
	1111111 =	Divide input clo	ck by 128				
	•						
	•						
	•						
	0000101 =	Divide input clo	ck by 6 (defa	ult)			
	•						
	•						
	•						
		Divide input clo					
				ivide)			
	0000001 =	Divide input clo Divide input clo Divide input clo	ck by 2	ivide)			

REGISTER 2	2-2: DAC1	STAT: DAC S	TATUS REG	SISTER			
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
LOEN	_	LMVOEN	—	—	LITYPE	LFULL	LEMPTY
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
ROEN		RMVOEN	_	_	RITYPE	RFULL	REMPTY
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	LOEN: Left C	Channel DAC ou	utput enable				
		and negative D puts are disable		re enabled.			
bit 14	Unimplemen	ted: Read as ') '				
bit 13	LMVOEN: Le	eft Channel Mid	point DAC out	tput voltage er	able		
		DAC output is output is disab					
bit 12-11		nted: Read as '					
bit 10	-	Channel Type					
		if FIFO is EMP if FIFO is NOT					
bit 9	•	us, Left Channe		IFO is FULL			
	1 = FIFO is F 0 = FIFO is r	Full.					
bit 8	LEMPTY: Sta	atus, Left Chanr	nel Data input	FIFO is EMP1	ΓY		
	1 = FIFO is B 0 = FIFO is r	Empty.	·				
bit 7		Channel DAC	output enable	•			
		and negative D puts are disable		re enabled.			
bit 6		nted: Read as 'o					
bit 5	RMVOEN: R	ight Channel Mi	idpoint DAC o	output voltage	enable		
		DAC output is output is disab					
bit 4-3	-	nted: Read as '					
bit 2	RITYPE: Rig	ht Channel Typ	e of Interrupt				
		if FIFO is EMP if FIFO is NOT					
bit 1	RFULL: Statu	us, Right Chanr	nel Data input	FIFO is FULL			
	1 = FIFO is 0 = FIFO is						
bit 0		atus, Right Cha	nnel Data inn	ut FIFO is FMI	⊃ТҮ		
2.4 0	1 = FIFO is E	-					
	0 = FIFO is r						

REGISTER 22-2: DAC1STAT: DAC STATUS REGISTER

REGISTER 22-3: DAC1DFLT: DAC DEFAULT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1D	FLT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1E)FLT<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	t W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	

bit 15-0 DACDFLT: DAC Default Value

REGISTER 22-4: DAC1LDAT: DAC LEFT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1L	DAT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1L	.DAT<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

bit 15-0 **DACLDAT:** Left Channel Data Port.

-n = Value at POR

REGISTER 22-5: DAC1RDAT: DAC RIGHT DATA REGISTER

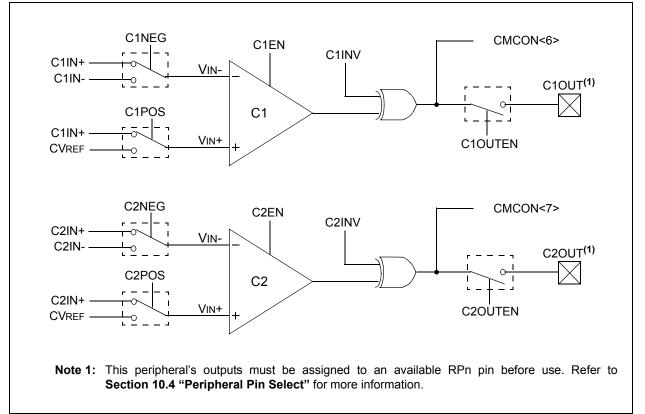
'1' = Bit is set

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1R	DAT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1F	2DAT<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	leared x = Bit is unknown		nown

bit 15-0 **DACRDAT:** Right Channel Data Port.

x = Bit is unknown

NOTES:


23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the "dsPIC33F Family Reference Manual",
	"Section 34. Comparator", which is avail-
	able from the Microchip website
	(www.microchip.com).

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 10.4 "Peripheral Pin Select"

FIGURE 23-1: COMPARATOR I/O OPERATING MODES

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CMIDL	—	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²	
bit 15							bit	
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	
bit 7		1				l	bit	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimplen	nented bit, rea	nd as '0'		
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15	CMIDL: Stop	in Idle Mode						
		vice enters Idle normal module			nerate interrup	ots. Module is stil	l enabled.	
bit 14		ted: Read as '	•					
bit 13	C2EVT: Com	parator 2 Even	t					
		tor output char						
	•	tor output did r	0	ates				
bit 12	C1EVT: Comparator 1 Event 1 = Comparator output changed states							
		tor output char tor output did r		ates				
bit 11	C2EN: Compa	arator 2 Enable	e					
	1 = Compara 0 = Compara	tor is enabled tor is disabled						
bit 10	•	arator 1 Enable	9					
	1 = Compara	tor is enabled tor is disabled						
bit 9	•	omparator 2 O	utnut Enable ⁽	1)				
		tor output is dr	•					
		tor output is no						
bit 8	C1OUTEN: C	omparator 1 O	utput Enable ⁽	2)				
		tor output is dr						
	•	tor output is no		e output pad				
bit 7		parator 2 Outp	ut bit					
	When C2INV 1 = C2 VIN+ >							
	0 = C2 VIN + 4							
	When C2INV							
	0 = C2 VIN + 2							
	1 = C2 VIN+ -	< (

REGISTER 23-1: CMCON: COMPARATOR CONTROL REGISTER

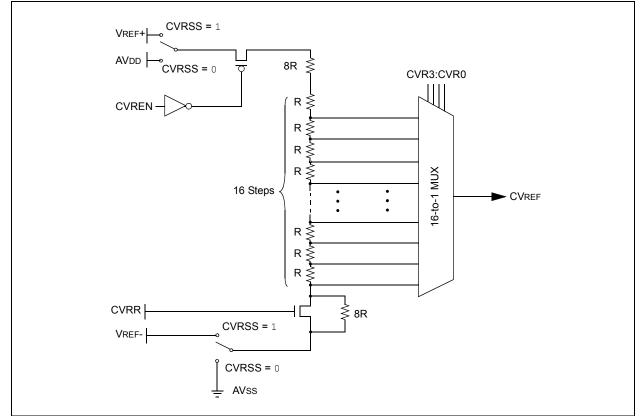
- Note 1: If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 23-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6	C1OUT: Comparator 1 Output bit							
	When C1INV = 0:							
	1 = C1 VIN + > C1 VIN-							
	0 = C1 VIN + < C1 VIN -							
	When $C1INV = 1$:							
	0 = C1 VIN+ > C1 VIN- 1 = C1 VIN+ < C1 VIN-							
bit 5								
DIL D	C2INV: Comparator 2 Output Inversion bit							
	 1 = C2 output inverted 0 = C2 output not inverted 							
bit 4	C1INV: Comparator 1 Output Inversion bit							
	1 = C1 output inverted							
	0 = C1 output not inverted							
bit 3	C2NEG: Comparator 2 Negative Input Configure bit							
	1 = Input is connected to VIN+							
	0 = Input is connected to VIN-							
	See Figure 23-1 for the comparator modes.							
bit 2	C2POS: Comparator 2 Positive Input Configure bit							
	1 = Input is connected to VIN+							
	0 = Input is connected to CVREF							
	See Figure 23-1 for the comparator modes.							
bit 1	C1NEG: Comparator 1 Negative Input Configure bit							
	1 = Input is connected to VIN+							
	0 = Input is connected to VIN- See Figure 23-1 for the comparator modes.							
bit 0	•							
DILU	C1POS: Comparator 1 Positive Input Configure bit							
	 1 = Input is connected to VIN+ 0 = Input is connected to CVREF 							
	See Figure 23-1 for the comparator modes.							
Note 1:	If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.							

2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.

23.1 Comparator Voltage Reference


23.1.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The voltage reference module is controlled through the CVRCON register (Register 23-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 23-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 23-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—		—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRR	CVRSS		CVF	R<3:0>	
bit 7							bit C
Legend: R = Readab	le hit	W = Writable	hit	U = Unimplem	ented hit rea	d as '0'	
-n = Value at POR		'1' = Bit is set		U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit i		x = Bit is unkr	nown
hit 15 0	Unimpleme	ated. Dood oo f	0'				
bit 15-8	Unimpleme	nted: Read as '	0'				
bit 7	CVREN: Comparator Voltage Reference Enable bit						
	1 = CVREF circuit powered on						
	0 = CVREF circuit powered down						
bit 6	CVROE: Comparator VREF Output Enable bit						
	1 = CVREF voltage level is output on CVREF pin						
	0 = CVREF voltage level is disconnected from CVREF pin						
bit 5	CVRR: Comparator VREF Range Selection bit						
	1 = CVRsRc range should be 0 to 0.625 CVRsRc with CVRsRc/24 step size						
	0 = CVRsRc range should be 0.25 to 0.719 CVRsRc with CVRsRc/32 step size						
bit 4	CVRSS: Comparator VREF Source Selection bit						
	1 = Comparator reference source CVRSRC = $VREF - VREF$						
	0 = Comparator reference source CVRSRC = AVDD - AVSS						
bit 3-0	CVR<3:0>: Comparator VREF Value Selection $0 \le CVR<3:0> \le 15$ bits When CVRR = 1:						
		<u>(= ⊥.</u> /R<3:0>/ 24) ● (
	When CVRR						

© 2008 Microchip Technology Inc.

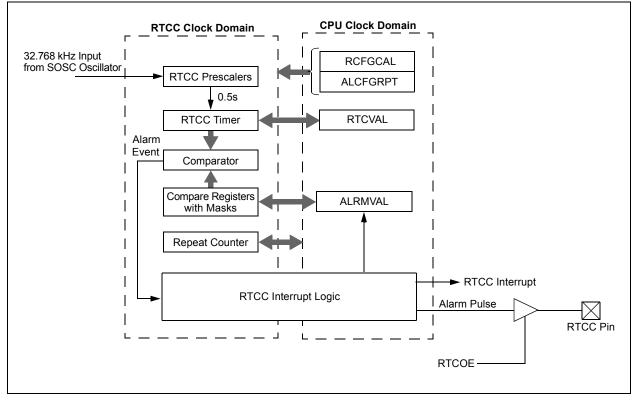
NOTES:

24.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04. and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", "Section 37. Real-Time Clock and Calendar (RTCC)", which is available from the Microchip website (www.microchip.com).

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices, and its operation. Listed below are some of the key features of this module:

- · Time: hours, minutes, and seconds
- 24-hour format (military time)
- Calendar: weekday, date, month, and year


FIGURE 24-1: RTCC BLOCK DIAGRAM

- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

24.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

24.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 24-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 24-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window			
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>		
00	MINUTES	SECONDS		
01	WEEKDAY	HOURS		
10	MONTH	DAY		
11	—	YEAR		

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 24-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 24-2: ALRMVAL REGISTER MAPPING

ALRMPTR <1:0>	Alarm Value Register Window			
	ALRMVAL<15:8>	ALRMVAL<7:0>		
00	ALRMMIN	ALRMSEC		
01	ALRMWD	ALRMHR		
10	ALRMMNTH	ALRMDAY		
11	_	_		

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and			
	not write operations.			

24.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 24-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 24-1.

EXAMPLE 24-1: SETTING THE RTCWREN BIT

MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
MOV	#0x55, W2	
MOV	#0xAA, W3	
MOV	W2, [W1]	;start 55/AA sequence
MOV	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0		
RTCEN ⁽²⁾	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPT	R<1:0>		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			CAL	<7:0>					
bit 7							bit (
Legend:									
R = Readable b	it	W = Writable	hit	U = Unimplem	ented hit read	as '0'			
-n = Value at P0		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	own		
						X Dit lo unit			
bit 15	RTCEN: RTC	CC Enable bit ⁽²⁾							
		nodule is enable							
		nodule is disable	-						
	-	nted: Read as '							
		RTCC Value Re	-						
			0	an be written to b re locked out fror		n to by the user	-		
	 RTCVALH and RTCVALL registers are locked out from being written to by the user RTCSYNC: RTCC Value Registers Read Synchronization bit 								
	1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple								
	resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid.								
				registers can be	e read without	concern over a	rollover ripple		
		Half-Second Sta		-9			FF		
	1 = Second	half period of a	second						
		f period of a sec							
		CC Output Enab	ole bit						
		utput enabled utput disabled							
		•	e Reaister Wi	ndow Pointer bit	5				
	RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL registers;								
	the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.								
	RTCVAL<15								
	00 = WIND 12								
	10 =MONTH								
	11 =Reserve								
	RTCVAL<7:0 00 =SECON								
	01 =HOURS								
	10 =DAY								

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 24-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0	CAL<7:0>: RTC Drift Calibration bits
	01111111 =Maximum positive adjustment; adds 508 RTC clock pulses every one minute
	•
	•
	•
	01111111 =Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 =No adjustment 11111111 =Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute
	•
	•
	•
	10000000 =Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- Note 1: The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 24-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	11.0	11.0					
0-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	_	—	—	—	—	
						bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	_	_	—	—	RTSECSEL ⁽¹⁾	PMPTTL	
					· · ·	bit 0	
	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			wn	
		— — — — t — W = Writable	W = Writable bit			— — — RTSECSEL ⁽¹⁾ t W = Writable bit U = Unimplemented bit, read as '0'	

bit 15-2 Unimplemented: Read as '0'

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME		AMA	SK<3:0>		ALRMP	TR<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-		ARP	T<7:0>			-
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
6:4 <i>4</i> 5		Aleres Enchle hit					
bit 15		: Alarm Enable bit i is enabled (cleai	ed automatic	ally after an al	arm event wh	enever ARPT<7	0> = 00h anr
	CHIM	E = 0) is disabled					
bit 14		hime Enable bit					
	1 = Chime	e is enabled; ARP e is disabled; ARF				h to FFh	
bit 13-10		3:0>: Alarm Mask		, ,			
		very half second	e egereater				
	0001 = Ev	very second					
		very 10 seconds					
		very minute very 10 minutes					
	0100 – Ev						
	0110 = O r						
		nce a week					
		nce a month nce a year (excep	whon config	urad for Eabrua	ny 20th onco	ovory (voore)	
		eserved – do not u			ry 29th, once	every 4 years)	
	11xx = Re	eserved – do not ι	se				
bit 9-8		eserved – do not ι R<1:0>: Alarm Val		Vindow Pointer	bits		
bit 9-8	ALRMPTF Points to the	R<1:0>: Alarm Val	ue Register V Alarm Value re	egisters when re	ading ALRMV		
bit 9-8	ALRMPTF Points to the	R<1:0>: Alarm Val he corresponding <i>/</i> PTR<1:0> value d	ue Register V Alarm Value re	egisters when re	ading ALRMV		
bit 9-8	ALRMPTF Points to th the ALRM <u>ALRMVAL</u> 00 = ALRI	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d .<15:8>: MMIN	ue Register V Alarm Value re	egisters when re	ading ALRMV		
bit 9-8	ALRMPTF Points to th the ALRMI <u>ALRMVAL</u> 00 = ALRI 01 = ALRI	R<1:0>: Alarm Val he corresponding <i>i</i> PTR<1:0> value d <u><15:8>:</u> MMIN MWD	ue Register V Alarm Value re	egisters when re	ading ALRMV		
bit 9-8	ALRMPTF Points to th the ALRMI <u>ALRMVAL</u> 00 = ALRI 01 = ALRI 10 = ALRI	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d <u><15:8>:</u> MMIN WWD MMNTH	ue Register V Alarm Value re	egisters when re	ading ALRMV		
bit 9-8	ALRMPTF Points to the the ALRMI ALRMVAL 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d <u><15:8>:</u> MMIN WWD MWNTH nplemented	ue Register V Alarm Value re	egisters when re	ading ALRMV		
bit 9-8	ALRMPTF Points to th the ALRMI <u>ALRMVAL</u> 00 = ALRI 01 = ALRI 10 = ALRI	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d . <u><15:8>:</u> MMIN MWD MWD MMNTH nplemented . <u><7:0>:</u>	ue Register V Alarm Value re	egisters when re	ading ALRMV		
bit 9-8	ALRMPTF Points to the the ALRM 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ALRMVAL 00 = ALRI 01 = ALRI	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d < <u><15:8>:</u> MMIN WWD MMNTH pplemented < <u><7:0>:</u> MSEC MHR	ue Register V Alarm Value re	egisters when re	ading ALRMV		
bit 9-8	ALRMPTF Points to the ALRM ALRMVAL 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ALRMVAL 00 = ALRI 01 = ALRI 10 = ALRI	R<1:0>: Alarm Val the corresponding / PTR<1:0> value d < <u>15:8>:</u> MMIN MWD MMNTH nplemented < <u><7:0>:</u> MSEC MHR MDAY	ue Register V Alarm Value re	egisters when re	ading ALRMV		
	ALRMPTF Points to the the ALRMI 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ALRMVAL 00 = ALRI 10 = ALRI 10 = ALRI 11 = Unim	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d <u><15:8>:</u> MMIN WWD MMNTH nplemented <u><7:0>:</u> MSEC MHR MDAY nplemented	ue Register V Alarm Value re ecrements on	egisters when re	ading ALRMV		
bit 9-8 bit 7-0	ALRMPTF Points to the the ALRM 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ALRMVAL 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ARPT<7:0	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d .<15:8>: MMIN MWD MMNTH nplemented .<7:0>: MSEC MHR MDAY nplemented D>: Alarm Repeat	ue Register V Alarm Value re ecrements on	egisters when re every read or w	ading ALRMV		
	ALRMPTF Points to the the ALRM 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ALRMVAL 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ARPT<7:0	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d <u><15:8>:</u> MMIN WWD MMNTH nplemented <u><7:0>:</u> MSEC MHR MDAY nplemented	ue Register V Alarm Value re ecrements on	egisters when re every read or w	ading ALRMV		
	ALRMPTF Points to the the ALRM 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ALRMVAL 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ARPT<7:0	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d .<15:8>: MMIN MWD MMNTH nplemented .<7:0>: MSEC MHR MDAY nplemented D>: Alarm Repeat	ue Register V Alarm Value re ecrements on	egisters when re every read or w	ading ALRMV		
	ALRMPTF Points to the the ALRMI 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ALRMVAL 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ARPT<7:0	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d .<15:8>: MMIN MWD MMNTH nplemented .<7:0>: MSEC MHR MDAY nplemented D>: Alarm Repeat L = Alarm will repe	ue Register V Alarm Value re ecrements on Counter Valu at 255 more	egisters when re every read or w	ading ALRMV		
	ALRMPTF Points to the the ALRMI 00 = ALRI 01 = ALRI 10 = ALRI 11 = Unim ALRMVAL 00 = ALRI 01 = ALRI 10 = ALRI 10 = ALRI 11 = Unim ARPT<7:0	R<1:0>: Alarm Val he corresponding / PTR<1:0> value d .<15:8>: MMIN MWD MMNTH nplemented .<7:0>: MSEC MHR MDAY nplemented D>: Alarm Repeat	ue Register V Alarm Value re ecrements on Counter Valu at 255 more epeat	egisters when re every read or w e bits times	ading ALRMV	'ALH until it reach	nes '00'.

DECISTED 24-3. ALCECTOT ALARM CONFIGURATION DECISTED

REGISTER 24-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
YRTEN<3:0>				YRONE<3:0>				
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit i		x = Bit is unkı	nown			

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 24-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0	MTHONE<3:0>			
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN<1:0>			DAYON	IE<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2008 Microchip Technology Inc.

REGISTER 24-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	—	—	—			WDAY<2:0>	
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN	HRTEN<1:0>		HRONE<3:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 24-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	E<3:0>	
bit 15							bit 8

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		SECTEN<2:0>		SECONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

REGISTER 24-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE<3:0>			
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN<1:0>		DAYONE<3:0>			
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 24-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
11.0	11.0						

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_	HRTEN	N<1:0>	HRONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2008 Microchip Technology Inc.

REGISTER 24-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	MINTEN<2:0> MINONE<3				NE<3:0>		
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_		SECTEN<2:0>			SECO	NE<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set	t '0' = Bit is cleared x = Bit is unknown			nown	

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

25.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a compre-
	hensive reference source. To complement
	the information in this data sheet, refer to
	the "dsPIC33F Family Reference Manual",
	"Section 36. Programmable Cyclic Redun-
	dancy Check (CRC)", which is available
	from the Microchip website (www.micro-
	chip.com).

The programmable CRC generator offers the following features:

- User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

25.1 Overview

The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR (X<15:1>) bits and the CRCCON (PLEN<3:0>) bits, respectively.

EQUATION 25-1: CRC EQUATION

$$x^{16} + x^{12} + x^5 + 1$$

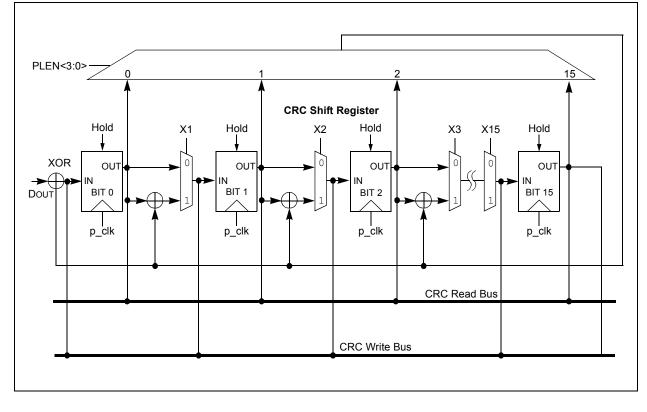
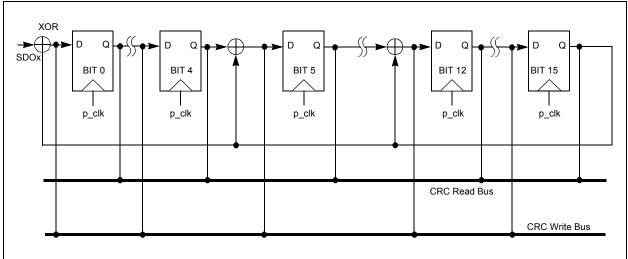

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 25-1.

TABLE 25-1:	EXAMPLE CRC SETUP
-------------	-------------------


Bit Name	Bit Value			
PLEN<3:0>	1111			
X<15:1>	00010000010000			

For the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the CRC equation. The 0th bit required by the CRC equation is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0th bit or the 16th bit.

The topology of a standard CRC generator is shown in Figure 25-2.

FIGURE 25-1: CRC SHIFTER DETAILS

FIGURE 25-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

25.2 User Interface

25.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO. To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 25.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

25.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

25.3 Operation in Power Save Modes

25.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

25.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

25.4 Registers

The CRC module provides the following registers:

- CRC Control Register
- CRC XOR Polynomial Register

REGISTER 25-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
—	—	CSIDL			VWORD<4:0>	>	
bit 15							bit 8

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO		PLEN	<3:0>	
bit 7			•				bit 0

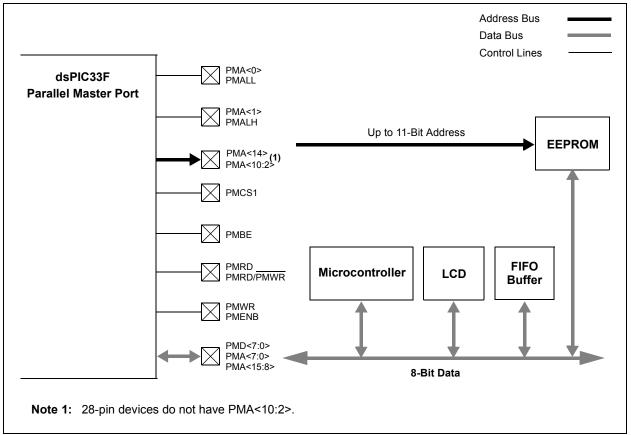
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7, or 16 when PLEN<3:0> \leq 7.
bit 7	CRCFUL: FIFO Full bit
	1 = FIFO is full
	0 = FIFO is not full
bit 6	CRCMPT: FIFO Empty Bit
	1 = FIFO is empty
	0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: Start CRC bit
	1 = Start CRC serial shifter
	0 = CRC serial shifter turned off
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		Х<	15:8>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
		X<7:1>				—
						bit 0
bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set	:	'0' = Bit is cleared x = Bit is unknown		nown	
	R/W-0	R/W-0 R/W-0	$\frac{R/W-0}{X<7:1>}$	X<15:8> R/W-0 R/W-0 X<7:1> bit W = Writable bit U = Unimpler	X<15:8> R/W-0 R/W-0 X<7:1> bit W = Writable bit	X<15:8> R/W-0 R/W-0 X<7:1>

REGISTER 25-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits


bit 0 Unimplemented: Read as '0'

26.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04. and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", "Section 35. Parallel Master Port (PMP)", which is available from the Microchip website (www.microchip.com).

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable. Key features of the PMP module include:

- Fully multiplexed address/data mode
 - 16-bits of address
- De multiplexed or partially multiplexed address/ data mode
 - Up to 11 address lines with single chip select
 - Up to 12 address lines without chip select
- One Chip Select Line
- Programmable Strobe Options
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 26-1: PMP MODULE OVERVIEW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN			
bit 15							bit			
R/W-0	R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0			
CSF1	CSF0	ALP		CS1P	BEP	WRSP	RDSP			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	PMPEN: Para	allel Master Po	rt Enable bit							
	1 = PMP ena 0 = PMP disa	abled abled, no off-cl	nip access per	formed						
bit 14	Unimplemen	ted: Read as	0'							
bit 13	PSIDL: Stop	in Idle Mode b	t							
		nue module op e module opera		levice enters Id de	le mode					
bit 12-11	ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits ⁽¹⁾									
	11 =Reserved									
	10 =All 16 bits of address are multiplexed on PMD<7:0> pins									
	01 =Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed or PMA<10:8>									
		and data appe	ar on separate	e pins						
bit 10		PTBEEN: Byte Enable Port Enable bit (16-bit Master mode)								
	-	1 = PMBE port enabled								
	0 = PMBE pc	ort disabled								
bit 9		rite Enable Str		le bit						
	 1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port disabled 									
1.1.0		•		1.11						
bit 8		ad/Write Strob		DIT						
	1 = PMRD/P 0 = PMRD/P	MWR port ena	bled							
	CSF1:CSF0:									
bit 7-6										
bit 7-6	11 = Reserve	-								
bit 7-6	10 = PMCS1	ed functions as c	hip select							
	10 = PMCS1 0x = PMCS1	ed functions as c functions as a	hip select ddress bit 14							
	10 = PMCS1 0x = PMCS1 ALP: Addres	ed functions as c functions as a s Latch Polarit	hip select ddress bit 14 y bit ⁽²⁾							
	10 = PMCS1 0x = PMCS1 ALP: Addres 1 = Active-hi	ed functions as c functions as a	hip select ddress bit 14 / bit ⁽²⁾ d PMALH)							
bit 5	10 = PMCS1 0x = PMCS1 ALP: Addres 1 = Active-hi 0 = Active-lo	ed functions as c functions as a s Latch Polarit gh (PMALL an	hip select ddress bit 14 y bit ⁽²⁾ d <u>PMALH</u>) PMALH)							
bit 7-6 bit 5 bit 4 bit 3	10 = PMCS1 0x = PMCS1 ALP: Addres 1 = Active-hi 0 = Active-lo Unimplemen	ed functions as c functions as a s Latch Polarit gh <u>(PMALL</u> an w (PMALL anc	hip select ddress bit 14 y bit ⁽²⁾ d <u>PMALH</u>) PMALH) 0'							
bit 5 bit 4	10 = PMCS1 0x = PMCS1 ALP: Addres 1 = Active-hi 0 = Active-lo Unimplemen CS1P: Chip S 1 = Active-hi	ed functions as c functions as a s Latch Polarit gh <u>(PMALL</u> and w (PMALL and hted: Read as	hip select ddress bit 14 y bit ⁽²⁾ d PMALH) PMALH) 0' y bit ⁽²⁾ <u>MCS</u> 1)							

DMCON, DADALLEL DODT CONTROL DECISTED

2: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 26-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

bit 2	BEP: Byte Enable Polarity bit
	 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	For Master mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD) For Master mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

Note 1: 28-pin devices do not have PMA<10:2>.

2: These bits have no effect when their corresponding pins are used as address lines.

Register 26-2:	PMMC	DDE: PARALL	EL PORT M	ODE REGIS	STER			
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
BUSY	IRQN	/<1:0>	INCM	<1:0>	MODE16	MODE	=<1:0>	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAITB<1	:0> (1)		WAITN	/<3:0>		WAITE	<1:0> ⁽¹⁾	
bit 7							bit	
Legend:								
R = Readable bi	t	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at PC	R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	BUSY: Busy	bit (Master mod	le only)					
	1 = Port is bu	usy (not useful v	• •	ssor stall is a	ctive)			
	0 = Port is no	Interrupt Reque	et Mode bite					
	or on a i 10 = No inter 01 = Interrup		eration when F processor sta	PMA<1:0> = 1	Write Buffer 3 is v 11 (Addressable le			
bit 12-11	INCM<1:0>:	Increment Mod	e bits					
	10 = Decrem	ad and write buf ent ADDR<10:0 ent ADDR<10:0 ement or decrer)> by 1 every r > by 1 every re	ead/write cyc ad/write cycle		/)		
bit 10	MODE16: 8/	16-bit Mode bit						
					o the data registe he data register			
		: Parallel Port M			U			
	10 =Master n 01 =Enhance	node 2 (PMCS1 ed PSP, control	l, PMRD <u>, PMV</u> signals (PMRD	/R, PMBE, PI , PM <u>WR, P</u> M	PMBE, PMA <x:0 MA<x:0> and PM ICS1, PMD<7:02 PMWR, PMCS1</x:0></x:0 	/ID<7:0>) > and PMA<1:()>)	
bit 7-6	WAITB<1:0>	: Data Setup to	Read/Write W	ait State Con	figuration bits ⁽¹⁾			
	10 = Data wa 01 = Data wa	ait of 4 TCY; mul ait of 3 TCY; mul ait of 2 TCY; mul ait of 1 TCY; mul	tiplexed addres	ss phase of 3 ss phase of 2	Тсү Тсү			
			-	-	onfiguration bits			
	1111 = Wait	of additional 15	Тсү					
		of additional 1		r ,	- \			
		dditional wait cy						
	WAILE<1:0> 11 = Wait of 4 10 = Wait of 3 01 = Wait of 3	3 Тсү	er Strope walt	Siale Configu	iation dits…			

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

REGISTER 26-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADDR15	CS1		-	ADDF	R<13:8>		-
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD	R<7:0>			
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15	ADDR15: Parallel Port Destination Address bits
bit 14	CS1: Chip Select 1 bit
	1 = Chip select 1 is active
	0 = Chip select 1 is inactive
bit 13-0	ADDR13:ADDR0: Parallel Port Destination Address bits

REGISTER 26-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	PTEN14	—	_	_	F	PTEN<10:8> ⁽¹⁾	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN<7:2> ⁽¹⁾					PTEN	<1:0>	
bit 7						•	bit 0

Legend:					
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value a	n = Value at POR '1' = Bit i		'0' = Bit is cleared	x = Bit is unknown	
bit 15 Unimplemented: Read as '0'					
bit 14	it 14 PTEN14: PMCS1 Strobe Enable bit				
 1 = PMA14 functions as either PMA<14> bit or PMCS1 0 = PMA14 pin functions as port I/O 					
bit 13-11	Unimplemented: Read as '0'				
bit 10-2	PTEN<10:2>: PMP Address Port Enable bits ⁽¹⁾				
	1 = PMA	<10:2> function as PMP add	dress lines		

- 0 = PMA<10:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL
 - 0 = PMA1 and PMA0 pads functions as port I/O

Note 1: Devices with 28 pins do not have PMA<10:2>.

© 2008 Microchip Technology Inc.

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
bit 15							bit 8
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	_		OB3E	OB2E	OB1E	OB0E
bit 7							bit C
Legend:		HS = Hardwa	re Set bit				
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14	0 = Some or IBOV: Input B	uffer Overflow tempt to a full	ole input buff Status bit	er registers are		ed in software)	
bit 13-12	Unimplemen	ted: Read as '	0'				
bit 11-8	 IB3F:IB0F Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data 						
bit 7	1 = All readal	Buffer Empty S ole output buffe all of the reada	er registers a	re empty uffer registers a	re full		
bit 6	 OBUF: Output Buffer Underflow Status bits 1 = A read occurred from an empty output byte register (must be cleared in software) 0 = No underflow occurred 						
bit 5-4	Unimplemen	ted: Read as '	0'				
bit 3-0	1 = Output bu	Output Buffer > uffer is empty (uffer contains o	writing data t	o the buffer will			

REGISTER 26-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
		—		—	_	RTSECSEL ⁽¹⁾	PMPTTL
bit 7		· · ·				· · ·	bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			wn	

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers
	0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

© 2008 Microchip Technology Inc.

NOTES:

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33F Family Reference Manual", which is available from the Microchip website (www.microchip.com).

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit emulation

27.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the FBS, FGS, FOSCSEL, FOSC, FWDT, and FPOR Configuration registers are shown in Table 27-2.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFF), which can only be accessed using table reads and table writes.

The upper byte of all device Configuration registers should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

The Device Configuration register map is shown in Table 27-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS<	:1:0>	_	—		BSS<2:0>		BWRP
0xF80002	FSS	RSS<	:1:0>	_	_		SSS<2:0>		SWRP
0xF80004	FGS	_		_	_	—	GSS<1:0>		GWRP
0xF80006	FOSCSEL IESO — —		_			FNOSC<2:0>			
0xF80008	FOSC	FCKSM			_	_	OSCIOFNC	POSCN	1D<1:0>
0xF8000A	FWDT	FWDTEN			WDTPRE		WDTPOST<3:0>		
0xF8000C	FPOR	PWMPIN	HPOL	LPOL	ALTI2C	—	FPW	/RT<2:0>	
0xF8000E	FICD	BKBUG	JG COE JTAGEN		_	_	- — ICS<		<1:0>
0xF80010	FUID0	User l		User Unit ID	User Unit ID Byte 0				
0xF80012	FUID1				User Unit ID) Byte 1			
0xF80014	FUID2				User Unit ID) Byte 2			
0xF80016	FUID3				User Unit ID) Byte 3			

TABLE 27-1: DEVICE CONFIGURATION REGISTER MAP

Note 1: These reserved bits read as '1' and must be programmed as '1'.

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment
		Boot space is 1K Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE
		010 = High security; boot program Flash segment ends at 0x0007FE
		Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE
		001 = High security; boot program Flash segment ends at 0x001FFE
		Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE
		000 = High security; boot program Flash segment ends at 0x003FFE
RBS<1:0> ⁽¹⁾	FBS	Boot Segment RAM Code Protection Size 11 = No Boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes
		00 = Boot RAM is 1024 bytes
SWRP	FSS	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) X11 = No Secure program flash segment
		Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE
		010 = High security; secure program flash segment starts at End of BS, ends at 0x001FFE
		Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE
		001 = High security; secure program flash segment starts at End of BS, ends at 0x003FFE
		Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh
		000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0> ⁽¹⁾	FSS	Secure Segment RAM Code Protection 10 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM
		01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM

Note 1: RAM Code Protection is only available on 64K and 128K devices and not implemented on 32K devices.

Bit Field	Register	Description
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32

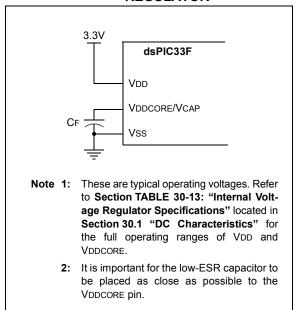
Note 1: RAM Code Protection is only available on 64K and 128K devices and not implemented on 32K devices.

Bit Field	Register	Description
WDTPOST<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
PWMPIN	FPOR	 Motor Control PWM Module Pin Mode bit 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Rese (configured as output pins)
HPOL	FPOR	Motor Control PWM High Side Polarity bit 1 = PWM module high side output pins have active-high output polarity 0 = PWM module high side output pins have active-low output polarity
LPOL	FPOR	Motor Control PWM Low Side Polarity bit 1 = PWM module low side output pins have active-high output polarity 0 = PWM module low side output pins have active-low output polarity
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
ALTI2C	FPOR	Alternate $I^2 C^{TM}$ pins 1 = $I^2 C$ mapped to SDA1/SCL1 pins 0 = $I^2 C$ mapped to ASDA1/ASCL1 pins
BKBUG	FICD	Background Debug Enable bit 1 = Device will reset in User mode 0 = Device will reset in Debug mode
COE	FICD	Debugger/Emulator Enable bit 1 = Device will reset in Operational mode 0 = Device will reset in Clip-On Emulation mode
JTAGEN	FICD	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGC1/EMUC1 and PGD1/EMUD1 10 = Communicate on PGC2/EMUC2 and PGD2/EMUD2 01 = Communicate on PGC3/EMUC3 and PGD3/EMUD3 00 = Reserved, do not use

TABLE 27-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: RAM Code Protection is only available on 64K and 128K devices and not implemented on 32K devices.

27.2 On-Chip Voltage Regulator


All of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/ X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VDDCORE/VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-13 located in **Section 30.0** "**Electrical Characteristics**".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the
	VDDCORE pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

27.3 BOR: Brown-Out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit, if enabled, continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

27.4 Watchdog Timer (WDT)

For dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

27.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

All Device Resets Transition to New Clock Source Exit Sleep or Idle Mode PWRSAV Instruction CLRWDT Instruction Watchdog Timer Sleep/Idle WDTPRE WDTPOST<3:0> SWDTEN WDT Wake-up FWDTEN Prescaler Postscaler WDT LPRC Clock (divide by N1) (divide by N2) Reset WDT Window Select WINDIS CLRWDT Instruction

FIGURE 27-2: WDT BLOCK DIAGRAM

27.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) needs to be cleared in software after the device wakes up.

27.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note:	If the WINDIS bit (FWDT<6>) is cleared, the
	CLRWDT instruction should be executed by
	the application software only during the last
	1/4 of the WDT period. This CLRWDT win-
	dow can be determined by using a timer. If
	a CLRWDT instruction is executed before
	this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.5 JTAG Interface

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70207) of the *dsPIC33F Family Reference Manual* for further information on usage, configuration and operation of the JTAG interface.

27.6 In-Circuit Serial Programming

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04, and dsPIC33FJ128MCX02/X04 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33F/PIC24H Flash Programming Specification"* (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGC1/EMUC1 and PGD1/EMUD1
- PGC2/EMUC2 and PGD2/EMUD2
- PGC3/EMUC3 and PGD3/EMUD3

27.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGC1/EMUC1 and PGD1/EMUD1
- PGC2/EMUC2 and PGD2/EMUD2
- PGC3/EMUC3 and PGD3/EMUD3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS, PGC, PGD and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

27.8 Code Protection and CodeGuard Security

The dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices offer advanced implementation of CodeGuard Security that supports BS, SS and GS while, the dsPIC33FJ32MC302/304 devices offer the intermediate level of CodeGuard Security that supports only BS and GS. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features.

Secure segment and RAM protection is implemented on the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices. The dsPIC33FJ32MC302/304 devices do not support secure segment and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) of the *dsPlC33F* Family Reference Manual for further information on usage, configuration and operation of CodeGuard Security.

	00 8K	000000h 0001FEh	000200h 0007FEh	000800h	002000h	003FFEh 004000h 0057EEb	0157FEh
	BSS<2:0>=x00 8K	VS = 256 IW	BS = 7936 IW			GS = 3072 IW	
	x01 4K	00000000000000000000000000000000000000	000200h 0007FEh	000800h	002000h	003FFEh 004000h 0057EEb	0157FEh
S	BSS<2:0>=x01 4K	VS = 256 IW	BS = 3840 IW			GS = 7168 IW	
BYTE DEVICE	x10 1K	000000h 0001FEh	000200h 0007FEh	000800h	002000h	003FFEh 004000h 0057EEh	0157FEh
ENT SIZES FOR 32K BYTE DEVICES	BSS<2:0>=x10 1K	VS = 256 IW	BS = 768 IW			GS = 10240 IW	
	x11 0K	000000h 0001FEh	000200h 0007FEh	000800h	002000h	003FFEh 004000h 0067EEh	0157FEh
FLASH SECUR	BSS<2:0>=x11 0K	VS = 256 IW				GS = 11008 IW	
TABLE 27-3: CODE FLASH SECURITY SEGM	CONFIG BITS			11 10.6700		УO	
TABL	0			00	5		

RVTE DEVICES 201 ٥ C U С 17 П F N I M C Q ū ċ 5

TABLE 27-4: CODE	FLASH SECURITY	SEGMENT SIZES FOR 64K BYTE DEVICES	CES	
CONFIG BITS	BSS<2:0>=x11 0K	BSS<2:0>=x10 1K	BSS<2:0>=x01 4K	BSS<2:0>=x00 8K
	VS = 256 IW 0001FEh 0001FEh 000200h 00077Eh 00077Eh 00077FEh	VS = 256 IW BS = 768 IW	VS = 256 IW 000000h BS = 3840 IW 0007FEh 0007FEh 0007FEh 0007FEh	VS = 256 IW 000000h BS = 7936 IW 000200h BS = 7936 IW 000200h 00018FEh 00018FEh
11x = c0:25666	GS = 21760 IW 004BF	GS = 20992 IW	GS = 17920 IW 002000h 0032000h 004000h 007FFEh 007BFEh	G02000h 003FFEh 003FFEh 007FFEh 007FFEh 00800h 00800h 00800h 008BFEh
	0157FEh VS = 256 IW 000000h 0001FEh	VS = 256 IW	0157FEh	0157FEh VS = 256 IW 000000h
SSS<2:0> = x10	SS = 3840 IW 0002000 0008001 0016FEP 0016FEP 0026000 0026000	0h BS = 768 IW 000200h 0F 0F 0F 000800h 0016FE 001 0016FE 0035FE 0035FE	BS = 3840 IW 000200h 0007FEh 0007FEh 001FFEh 001FFEh 003FFEh	BS = 7936 IW 000200h 0007FEFh 000800h 001FFE 001FFEh 003FFFFh
4K	GS = 17920 IW 00400 007FI 00800 00AB	GS = 17920 IW	GS = 17920 IW 00ABFEh 00ABFEh	004000h 007FFEh 007BFEh 008000h 00ABFEh
	0157FEh	Eh 0157FEh	0157FEh	0157FEh
SSS<2:0> = x01	VS = 256 IW 000000 0007FEh 0007FEh 0007FEh 0007FEh 0007FEh 00077FEh 00077FEh 00077FEh 00077FEh 00077FEh 000200h 00077FEh 000200h 0007000h 000700h 0007000h 0007000h 000700h 0007000h 000700h 0007000h 0007000h 000700h 0007000h 000700h 0007000h 000700h 00000h 00000000	0h EEh 00 00 00 00 00 00 00 00 00 00 00 00 00	VS = 256 IW 00000h BS = 3840 IW 000200h 0007FEh 0007FEh 000800h SS = 4096 IW 002000h SS = 4096 IW 002000h	VS = 256 IW 000000 BS = 7936 IW 0001FEh 0007FEh 0007FEh 000800h 0001FFEh 000800h 0001FFEh
85	GS = 13824 IW 004000 008000h 00ABFEF 00ABFEF	GS = 13824 IW	GS = 13824 IW 0075FEh 008000h 00ABFEh 0157FEh	004000h 007FFEh 007FFEh 008BFEh 00ABFEh
	VS = 256 IW 00001F 00021 00021 00021 0007F 0007F	VS = 256 IW BS = 768 IW	VS = 256 IW 000000 BS = 3840 IW 000200 BS = 3840 IW 00027Eh 00027Eh 000880h	VS = 256 IW 000000 BS = 7936 IW 0001FEh 000200h 00087FEh 000800h
SSS<2:0> = x00 16K	SS = 16128 IW 002000 003FFEh 003FFEh 007FFEh 007FFEh 008000h 008B6FEh	001 EEh 201 201 201 201 201 201 201 201 202 202	SS = 12288 IW 002000 house GS = 5632 IW 007FFEh GS = 5632 IW 00ABFEh	SS = 8192 IW 002000 003FFEh 003FFEh 004000 007FFEh 008000h 008000h 00ABFEh
	0157FEh	=Eh 0157FEh	0157FEh	0157FEh

$dsPIC33FJ32MC302/304,\, dsPIC33FJ64MCX02/X04,\, AND\, dsPIC33FJ128MCX02/X04$

÷
FOR
T SIZES FOR
ECURITY SEGMENT S
RITY SE
H SECU
CODE FLASH SECI
CODE
27-5:
BLE 27

TABLE 27-5: CODE	FLASH SECURITY SEGME	NT SIZES FOR 128K BYTE DEVICES	CES	
CONFIG BITS	BSS<2:0>=x11 0K	BSS<2:0>=x10 1K	BSS<2:0>=x01 4K	BSS<2:0>=x00 8K
	VS = 256 IW 0000000 0001FEh 0007FEh 0007FEh	VS = 256 IW 000000 BS = 768 IW 00027FEh 00077FEh	VS = 256 IW 00000h BS = 3840 IW 0007FEh 0007FEh	VS = 256 IW 000000 BS = 7936 IW 0002FEb 0002600
SSS<2:0> = x11	00100000000000000000000000000000000000	0015555h 002000h 0035555h	002000h 002000h 003555h	001FFEED 002000h 003FFEED
Х О	0040000 007FFEh 0080000 0880000 00860000 0086000000 0086000000	0042000 0026500 0086000 000655 000000	004000 0080000 0080000 0080000 008555	0.042000 0078FEFh 0080000 0080000 008FFEFh 008FFEFh 008FFEFh
	VS = 256 IW 000000	VS = 256 IW 000000h 0001FEh	VS = 256 IW 000000h	VS = 256 IW 000000h 0001FEh
1	000200h 0007FEh SS = 3840 IW 000800h 000800h	BS = 768 IW 000200h SS = 3072 IW 000800h 000800h	BS = 3840 IW 000200h 000807Eh 000800h 0017FEh	BS = 7936 IW 000200h 0007FEh 000800h 001FFEh
0TX = <0:7>000	002000h 003FFEh	002000h 003FFEh	002000h 003FFEh	002000h 0035FFEh
4K	0040000 007FFEh 0080000	004000h 007FFEh 008000h 000 BEFEh	004000h 007FFEh 008000h	0040000 0027FFED 0080000
	GS = 39936 IW	GS = 39936 IW	GS = 39936 IW	GS = 35840 IW 00ABFEN 01575Eh
	VS = 256 IW 000000h 00000h	VS = 256 IW 00000h	VS = 256 IW 000000h	VS = 256 IW 000000h
	0007FEh 00007FEh 000800h	BS = 768 IW 0007FEh 000800h	BS = 3840 IW 0007FEh 000800h	BS = 7936 IW 0002000 0007FEh 000800h
SSS<2:0> = x01	001FFEh SS = 7936 IW 002000h 003FFEh	001FFEh 002000h 003FFEh 003FFEh	SS = 4096 IW 003FFFh	001FFEh 002000h 003FFEh
8K	004000h 007FFEh 008000h	004000h 007FFEh	004000h 007FFEh 008000h	004000h 007FFEh
	GS = 35840 IW 010000h	GS = 35840 IW 010000h	GS = 35840 IW 010000h	GS = 35840 IW 010000h
	0157FEh	0157FEh	0157FEh	0157FEh
	VS = 256 IW 000000	VS = 256 IW 00000h 0001FEh	VS = 256 IW 000000	VS = 256 IW 000000h 0001EEh
	000200h 0007FEh 0002500h	BS = 768 IW 000200h 0007FEh 000800h	BS = 3840 IW 000200h 00007FEh 000800h	BS = 7936 IW 000200h
SSS<2:0> = x00	001FFEN 002000N 003EEED	0011FFED 002000h 003EEED	0016660	0011550
16K	SS = 16128 IW 002FFEP	SS = 15360 IW 002000	SS = 12288 IW 0040001	SS = 8192 IW 002676
	GS = 27648 IW 010000h	GS = 27648 IW 010000h	GS = 27648 IW 010000h	GS = 27648 IW 010000h
	0157FEh	0157FEh	0157FEh	0157FEh

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

28.0 INSTRUCTION SET SUMMARY

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04, and
	dsPIC33FJ128MCX02/X04 families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the related section in the
	"dsPIC33F Family Reference Manual",
	which is available from the Microchip
	website (www.microchip.com).

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 28-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The $\ensuremath{\mathtt{MAC}}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- · The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"dsPIC30/33F Programmer's Reference Manual"* (DS70157).

Field	Description				
#text	Means literal defined by "text"				
(text)	Means "content of text"				
[text]	Means "the location addressed by text"				
{ }	Optional field or operation				
<n:m></n:m>	Register bit field				
.b	Byte mode selection				
.d	Double-Word mode selection				
.S	Shadow register select				
.w	Word mode selection (default)				
Acc	One of two accumulators {A, B}				
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}				
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$				
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero				
Expr	Absolute address, label or expression (resolved by the linker)				
f	File register address ∈ {0x00000x1FFF}				
lit1	1-bit unsigned literal $\in \{0,1\}$				
lit4	4-bit unsigned literal ∈ {015}				
lit5	5-bit unsigned literal ∈ {031}				
lit8	8-bit unsigned literal ∈ {0255}				
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode				
lit14	14-bit unsigned literal ∈ {016384}				
lit16	16-bit unsigned literal ∈ {065535}				
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'				
None	Field does not require an entry, can be blank				
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate				
PC	Program Counter				
Slit10	10-bit signed literal \in {-512511}				
Slit16	16-bit signed literal ∈ {-3276832767}				
Slit6	6-bit signed literal \in {-1616}				
Wb	Base W register ∈ {W0W15}				
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }				
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }				
Wm,Wn	Dividend, Divisor working register pair (direct addressing)				
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}				

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description			
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}			
Wn	One of 16 working registers ∈ {W0W15}			
Wnd	One of 16 destination working registers \in {W0W15}			
Wns	One of 16 source working registers ∈ {W0W15}			
WREG	W0 (working register used in file register instructions)			
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }			
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }			
Wx X data space prefetch address register for DSP instructions $\in \{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none} $				
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}			
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}			

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

IABL	E 28-2:								
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected		
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB		
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z		
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z		
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z		
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z		
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z		
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB		
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z		
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z		
		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z		
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z		
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z		
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z		
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z		
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z		
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z		
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z		
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z		
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z		
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z		
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z		
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z		
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None		
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None		
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None		
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None		
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None		
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None		
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None		
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None		
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None		
		BRA	LT,Expr	Branch if less than	1	1 (2)	None		
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None		
		BRA	N,Expr	Branch if Negative	1	1 (2)	None		
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None		
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None		
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None		
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None		
		BRA	OA, Expr	Branch if Accumulator A overflow	1	1 (2)	None		
		BRA	OB, Expr	Branch if Accumulator B overflow	1	1 (2)	None		
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None		
		BRA		Branch if Accumulator A saturated	1	1 (2)	None		
		BRA	SA, Expr	Branch if Accumulator B saturated	1	1 (2)	None		
			SB, Expr	Branch Unconditionally	1	2	None		
		BRA BRA	Expr 7 Expr	Branch if Zero	1	1 (2)	None		
			Z,Expr	Computed Branch	1	2	None		
7	DODU	BRA	Wn						
1	BSET	BSET	f,#bit4	Bit Set f	1	1	None		
0	DOM	BSET	Ws,#bit4	Bit Set Ws	1	1	None		
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None		
0	DEC	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None		
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None		
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None		

TABLE 28-2: INSTRUCTION SET OVERVIEW

TABLE 28-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	COM	f	$f = \overline{f}$	1	1	N,Z
		СОМ	f,WREG	WREG = f	1	1	N.Z
		СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
10	CF	CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
15	CEO	CPO	Ws	Compare Vs with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
20	CID	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb, Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	(2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws – 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

© 2008 Microchip Technology Inc.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

	embly monic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48 MPY		MPY Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49 MPY.	. N	MPY.N Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50 MSC		MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51 MUL		MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52 NEG		NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	f = f + 1	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53 NOP		NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54 POP		POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55 PUSH	ł	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56 PWRS	SAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57 RCAL	L	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58 REPE	EAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59 RESE	ΞT	RESET		Software device Reset	1	1	None
60 RETF	FIE	RETFIE		Return from interrupt	1	3 (2)	None
61 RETL	ωW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62 RETU	JRN	RETURN		Return from Subroutine	1	3 (2)	None
63 RLC		RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64 RLNC	2	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
~		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65 RRC		RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
66 RRNC	2	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
				3 ())			N,Z N,Z
		RRNC RRNC	f,WREG Ws,Wd	WREG = Rotate Right (No Carry) f Wd = Rotate Right (No Carry) Ws	1	1	

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PICSTART[®] Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

29.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

29.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

29.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

29.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

29.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

29.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

29.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

29.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/ X04 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to Vss	-0.3V to +5.6V
Voltage on VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - **2:** Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGCx and PGDx pins, which are able to sink/source 12 mA.

30.1 DC Characteristics

TABLE 30-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD PINT + PI/O			W	
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Мах	Unit	Notes
Package Thermal Resistance, 44-pin QFN	θja	24.5		°C/W	1
Package Thermal Resistance, 44-pin TFQP	θja	45.8	_	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θja	60	_	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	80.2	_	°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θja	29		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq \ +85^\circ C \ for \ Industrial \\ & -40^\circ C \leq TA \leq \ +125^\circ C \ for \ Extended \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
Operati	ng Voltag	e						
DC10	Supply V	/oltage						
	Vdd		3.0	_	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.1	—	1.8	V		
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	—	Vss	V		
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	-	—	V/ms	0-3.0V in 0.1s	
DC18	VCORE	VDD Core ⁽³⁾ Internal regulator voltage	2.25	—	2.75	V	Voltage is dependent on load, temperature and VDD	

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

© 2008 Microchip Technology Inc.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions			
Operating Cur	rent (IDD) ⁽²⁾			•			
DC20d	19	30	mA	-40°C			
DC20a	19	30	mA	+25°C	- 3.3V	10 MIPS	
DC20b	19	30	mA	+85°C	3.3V	10 101195	
DC20c	19	35	mA	+125°C			
DC21d	29	40	mA	-40°C			
DC21a	29	40	mA	+25°C	- 3.3V	16 MIPS	
DC21b	28	45	mA	+85°C		10 MIPS	
DC21c	28	45	mA	+125°C			
DC22d	33	50	mA	-40°C			
DC22a	33	50	mA	+25°C	3.3V	20 MIPS	
DC22b	33	55	mA	+85°C	3.3V	20 MIPS	
DC22c	33	55	mA	+125°C			
DC23d	47	70	mA	-40°C			
DC23a	48	70	mA	+25°C	- 3.3V	30 MIPS	
DC23b	48	70	mA	+85°C	3.3V	30 IVIIP3	
DC23c	48	70	mA	+125°C			
DC24d	60	90	mA	-40°C			
DC24a	60	90	mA	+25°C	3.3V	40 MIPS	
DC24b	60	90	mA	+85°C	3.3V	40 101175	
DC24c	60	90	mA	+125°C]		

TABLE 30-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions			
Idle Current (I	DLE): Core OF	F Clock ON	Base Curren	t ⁽²⁾			
DC40d	4	25	mA	-40°C			
DC40a	4	25	mA	+25°C			
DC40b	4	25	mA	+85°C	3.3V	10 MIPS	
DC40c	4	25	mA	+125°C			
DC41d	6	25	mA	-40°C		16 MIPS	
DC41a	6	25	mA	+25°C	- 3.3V		
DC41b	6	25	mA	+85°C			
DC41c	6	25	mA	+125°C			
DC42d	9	25	mA	-40°C			
DC42a	9	25	mA	+25°C	0.01/	00 14/00	
DC42b	9	25	mA	+85°C	3.3V	20 MIPS	
DC42c	9	25	mA	+125°C			
DC43d	16	25	mA	-40°C			
DC43a	16	25	mA	+25°C	0.01/		
DC43b	16	25	mA	+85°C	- 3.3V	30 MIPS	
DC43c	16	25	mA	+125°C	1		
DC44d	18	25	mA	-40°C			
DC44a	18	25	mA	+25°C	2.23/		
DC44b	19	25	mA	+85°C	- 3.3V	40 MIPS	
DC44c	19	25	mA	+125°C	1		

TABLE 30-6: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 30-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	$\label{eq:characteristics} \mbox{CHARACTERISTICS} \mbox{Standard Operating Conditions: 3.0V to 3.6V} (unless otherwise stated) \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{cases}$								
Parameter No.	Typical ⁽¹⁾	Мах	Units		Conditions				
Power-Down	Current (IPD) ⁽	2)							
DC60d	24	500	μA	-40°C					
DC60a	28	500	μA	+25°C	2.21/	Base Power-Down Current ^(3,4)			
DC60b	124	500	μA	+85°C	3.3V	Base Power-Down Current			
DC60c	350	500	μA	+125°C					
DC61d	8	13	μA	-40°C					
DC61a	10	15	μA	+25°C	2 2)/	Watchdog Timer Current: ∆IwDT ⁽³⁾			
DC61b	12	20	μA	+85°C	3.3V				
DC61c	13	25	μA	+125°C					

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off.

3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

TABLE 30-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERI	STICS	Standard C (unless oth Operating t	nerwise st	r ated) re -40°C	≤ TA ≤ +8	3.6V 5°C for Industrial 25°C for Extended	
Parameter No.	Typical ⁽¹⁾	Doze Ratio	Units		Conc	litions	
DC73a	42	50	1:2	mA			
DC73f	23	30	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	23	30	1:128	mA			
DC70a	42	50	1:2	mA			
DC70f	26	30	1:64	mA	+25°C	3.3V	40 MIPS
DC70g	25	30	1:128	mA			
DC71a	41	50	1:2	mA			
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	24	30	1:128	mA			
DC72a	42	50	1:2	mA			
DC72f	26	30	1:64	mA	+125°C	3.3V	40 MIPS
DC72g	25	30	1:128	mA			

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

DC CHA	RACTER	ISTICS	Standard Operatin (unless otherwise Operating tempera	stated) ature -	40°C ≤ Ta ≤	+85°C	V for Industrial C for Extended
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O pins	Vss	—	0.2 Vdd	V	
DI11		PMP pins	Vss	_	0.15 Vdd	V	PMPTTL = 1
DI15		MCLR	Vss		0.2 Vdd	V	
DI16		OSC1 (XT mode)	Vss		0.2 Vdd	V	
DI17		OSC1 (HS mode)	Vss		0.2 Vdd	V	
DI18		SDAx, SCLx	Vss	_	0.3 Vdd	V	SMbus disabled
DI19		SDAx, SCLx	Vss	—	0.2 Vdd	V	SMbus enabled
	Vih	Input High Voltage					
DI20		I/O pins: with analog functions ⁽⁴⁾ digital-only ⁽⁴⁾	0.8 Vdd 0.8 Vdd	—	Vdd 5.5	V V	
DI21		PMP pins: with analog functions ⁽⁴⁾ digital-only ⁽⁴⁾	0.24 Vdd + 0.8 0.24 Vdd + 0.8	_	Vdd 5.5	V V	PMPTTL = 1
DI25		MCLR	0.8 Vdd		Vdd	V	
DI26		OSC1 (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V	
DI28		SDAx, SCLx	0.7 Vdd	—	Vdd	V	SMbus disabled
DI29		SDAx, SCLx	0.8 VDD		Vdd	V	SMbus enabled
DI30	ICNPU	CNx Pull-up Current	50	250	400	μA	Vdd = 3.3V, Vpin = Vss

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See Table 10-1 for a list of digital-only and analog pins.

DC CHA	RACTER	ISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol Characteristic		Min	Typ ⁽¹⁾	Мах	Units	Conditions			
DI50	lı∟	Input Leakage Curent ⁽²⁾⁽³⁾ I/O ports	_	_	±2	μΑ	$Vss \le VPIN \le VDD,$ Pin at high-imped- ance			
DI51		Analog Input Pins	_	_	±1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-imped-} \\ ance, \\ 40^\circC \leq TA \leq +85^\circC \end{array}$			
DI51a		Analog Input Pins	_	_	±2	μA	Analog pins shared with external refer- ence pins, $40^{\circ}C \le TA \le +85^{\circ}C$			
DI51b		Analog Input Pins	_	_	±3.5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-imped-} \\ ance, \\ -40^\circ C \leq TA \leq +125^\circ C \end{array}$			
DI51c		Analog Input Pins		_	±8	μA	Analog pins shared with external refer- ence pins, $-40^{\circ}C \le TA \le +125^{\circ}C$			
DI55		MCLR	—	—	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
DI56		OSC1	_	—	±2	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$			

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See Table 10-1 for a list of digital-only and analog pins.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol Characteristic Min Typ Max Un						Conditions		
	Vol	Output Low Voltage							
DO10		I/O ports	_	_	0.4	V	Iol = 2 mA, Vdd = 3.3V		
DO16		OSC2/CLKO	_	_	0.4	V	Iol = 2 mA, Vdd = 3.3V		
	Voh	Output High Voltage							
DO20		I/O ports	2.40	—	—	V	Iон = -2.3 mA, Vdd = 3.3V		
DO26		OSC2/CLKO	2.41 — V IOH = -1.3 mA, VDD = 3.3V						

TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHAR	DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Character	Min ⁽¹⁾	Тур	Мах	Units	Conditions			
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40	_	2.55	V			

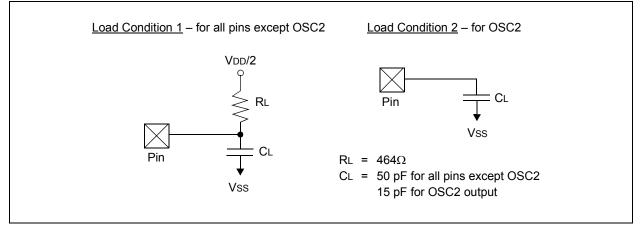
Note 1: Parameters are for design guidance only and are not tested in manufacturing.

DC CHARACTERISTICS			(unless	otherw	ating Cor ise state erature	nditions: 3.0V to 3.6V d) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Symbol Characteristic Min Typ ⁽¹⁾ Max L			Units	Conditions		
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	VMIN	_	3.6	V	Vмın = Minimum operating voltage	
D132B	VPEW	VDD for Self-Timed Write	VMIN	_	3.6	V	Vмın = Minimum operating voltage	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current during Programming	—	10	—	mA		
D136	Trw	Row Write Time	1.6	—	_	ms		
D137	TPE	Page Erase Time	20	—	—	ms		
D138	Tww	Word Write Cycle Time	20	—	40	μS		

TABLE 30-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 30-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS


	Standard Operating Conditions (unless otherwise stated): Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol Characteristics Min Ivo Max Units Comments									
	Cefc	External Filter Capacitor Value	1	10	_	μF	Capacitor must be low series resistance (< 5 ohms)			

30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 AC characteristics and timing parameters.

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 30.0 "Electrical Characteristics"						
	Characteristics".						

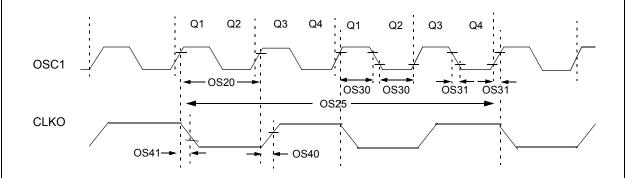

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	_	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

FIGURE 30-2: EXTERNAL CLOCK TIMING

TABLE 30-16: EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions			
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC			
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS SOSC			
OS20	Tosc	Tosc = 1/Fosc	12.5	—	DC	ns				
OS25	TCY	Instruction Cycle Time ⁽²⁾	25		DC	ns				
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	—	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	_	ns				
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	_	ns				

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

АС СНА		STICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter	-3	0.5	3	%	Measured over 100 ms period	

TABLE 30-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

АС СНА	RACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Characteristic	Min	Тур	Max	Units	Jnits Conditions				
	Internal FRC Accuracy	FRC Fr	equency	= 7.37 N	IHz ^(1,2)					
F20	FRC	-2	_	+2	%	$-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = 3.0-3.6V				
	FRC	-5	_	+5	%	$-40^\circ C \le T \text{A} \le +125^\circ C$	VDD = 3.0-3.6V			

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

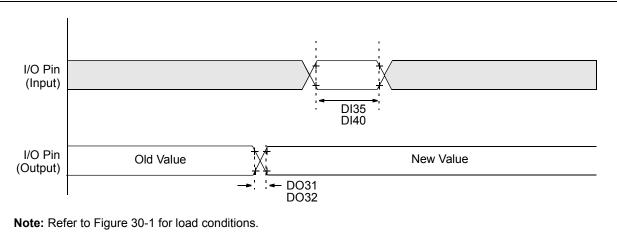

2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.

TABLE 30-19: INTERNAL RC ACCURACY

АС СН	ARACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	LPRC @ 32.768 kHz ⁽¹⁾								
F21	LPRC	-20	±6	+20	%	$-40^\circ C \le T \text{A} \le +85^\circ C$	VDD = 3.0-3.6V		
	LPRC	-70	_	+70	%	$-40^{\circ}C \le TA \le +125^{\circ}C \qquad \text{VDD} = 3.0\text{-}3.6V$			

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 30-3: I/O TIMING CHARACTERISTICS

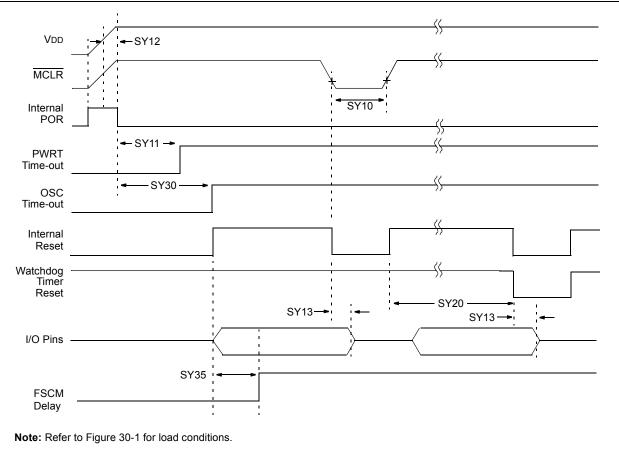
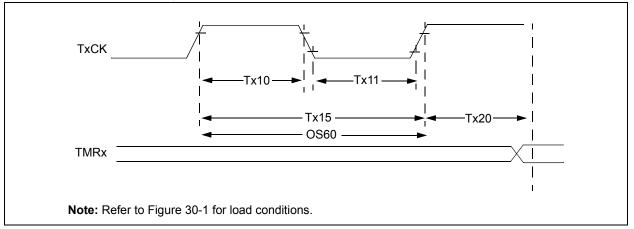


TABLE 30-20: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	vise state	ed) -40°C ≤	Ta ≤ +85	°C for In	dustrial Extended
Param No.	Symbol	Character	Characteristic		Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TioR	Port Output Rise Tim	e		10	25	ns	—
DO32	TIOF	Port Output Fall Time	Port Output Fall Time		10	25	ns	—
DI35	TINP	NTx Pin High or Low Time (output)		20	_	—	ns	—
DI40	Trbp	CNx High or Low Time (input)		2		_	Тсү	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 30-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS TIMING REQUIREMENTS


АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.SymbolCharacteristic ⁽¹⁾ Min					Max	Units	Conditions		
SY10	TMCL	MCLR Pulse Width (low)	2	—	_	μS	-40°C to +85°C		
SY11	Tpwrt	Power-up Timer Period	_	2 4 16 32 64 128		ms	-40°C to +85°C User programmable		
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS			
SY20	Twdt1	Watchdog Timer Time-out Period (No Prescaler)	1.7	2.1	2.6	ms	VDD = 3V, -40°C to +85°C		
SY30	Tost	Oscillator Start-up Time	—	1024 Tosc	_	—	Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

FIGURE 30-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS

АС СНА	RACTERIST	ICS		(unless	rd Operating (s otherwise sta ing temperatur	ated) e -40°	C ≤ TA ≤	+85°C f	/ or Industrial c for Extended
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchror no presca		0.5 TCY + 20	—	—	ns	Must also meet parameter TA15
			Synchror with pres		10	—	—	ns	
			Asynchro	onous	10	—		ns	
TA11	ΤτxL	TxCK Low Time	Synchror no presca		0.5 TCY + 20	_	—	ns	Must also meet parameter TA15
			Synchror with pres		10	_	—	ns	
			Asynchro	onous	10	_		ns	
TA15	ΤτχΡ	TxCK Input Period	Synchror no presca		Tcy + 40	_	—	ns	
			Synchror with pres		Greater of: 20 ns or (Tcy + 40)/N	—	—	_	N = prescale value (1, 8, 64, 256)
			Asynchro	onous	20	_	_	ns	
OS60	Ft1	SOSC1/T1CK Osci frequency Range (o by setting bit TCS (scillator e	nabled	DC	—	50	kHz	
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 TCY		1.5 TCY		

TABLE 30-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

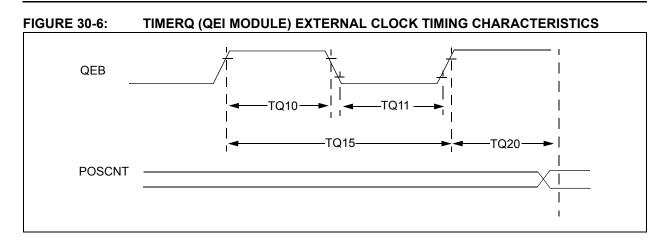
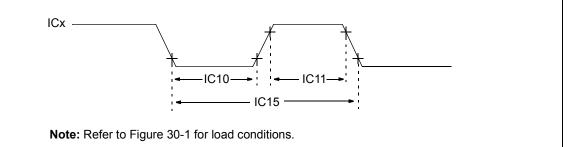

АС СНА	RACTERIS	TICS		(unles	ard Operating s otherwise st ting temperatu	t ated) re -40°	°C ≤ TA ≤ ·	+85°C fo	r Industrial for Extended
Param No.	Symbol Characteristic			Min	Тур	Max	Units	Conditions	
TB10	TtxH	TxCK High Time	Synchro no prese		0.5 Tcy + 20	I	_	ns	Must also meet parameter TB15
			Synchronous, with prescaler		10		_	ns	
TB11	TtxL	TxCK Low Time	Synchro no prese		0.5 TCY + 20		—	ns	Must also meet parameter TB15
			Synchro with pre		10		—	ns	
TB15	TtxP	TxCK Input Period	Synchro no prese		Tcy + 40	_	—	ns	N = prescale value
			Synchronous, with prescaler		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from Externa Edge to Timer Incr		Clock	0.5 TCY	-	1.5 TCY	-	

TABLE 30-23: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

TABLE 30-24: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				(unles	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol Characteristic				Min	Тур	Max	Units	Conditions
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 TCY + 20	_		ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 TCY + 20			ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchro no presc		Tcy + 40		_	ns	N = prescale value
			Synchronous, with prescaler		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TCY	_	1.5 Тсү	—	

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04


TABLE 30-25: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteri	stic ⁽¹⁾		Min	Тур	Мах	Units	Conditions
TQ10	TtQH		Synchro with pre	,	Тсү + 20		_	ns	Must also meet parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchro with pre	,	Tcy + 20		_	ns	Must also meet parameter TQ15
TQ15	TtQP		Synchro with pre		2 * Tcy + 40		_	ns	_
TQ20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.5 TCY		1.5 Tcy		—	

Note 1: These parameters are characterized but not tested in manufacturing.

© 2008 Microchip Technology Inc.

FIGURE 30-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

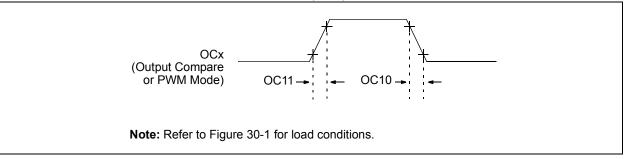


TABLE 30-26: INPUT CAPTURE TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	(unless otherwis	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characte	cteristic ⁽¹⁾ Min Max Units C						
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20	_	ns			
			With Prescaler	10	_	ns			
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns			
			With Prescaler	10	_	ns			
IC15	TccP	ICx Input Period	(TCY + 40)/N — ns N = prescale value (1, 4, 16						

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

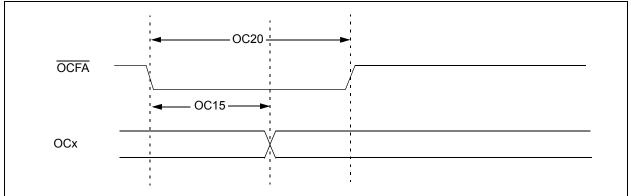
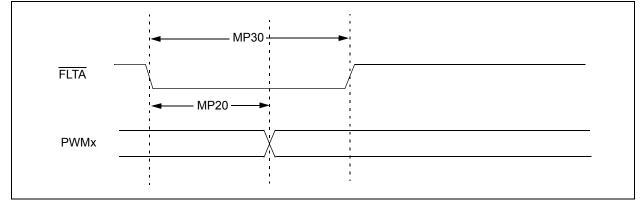


TABLE 30-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

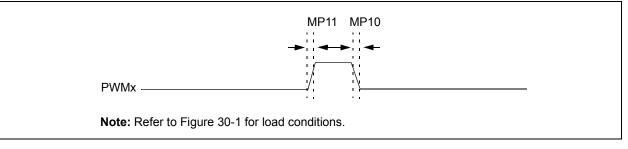
АС СНА	AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	_	_	ns	See parameter D032		
OC11	TccR	OCx Output Rise Time	— — ns See parameter D031						

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-9: OC/PWM MODULE TIMING CHARACTERISTICS


TABLE 30-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Condition				Conditions
OC15	Tfd	Fault Input to PWM I/O Change		_	50	ns	_
OC20	TFLT	Fault Input Pulse Width	50			ns	—


Note 1: These parameters are characterized but not tested in manufacturing.

© 2008 Microchip Technology Inc.

FIGURE 30-10: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS

FIGURE 30-11: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS

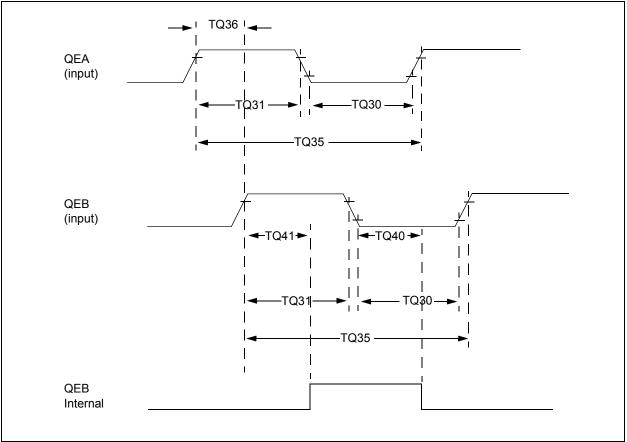
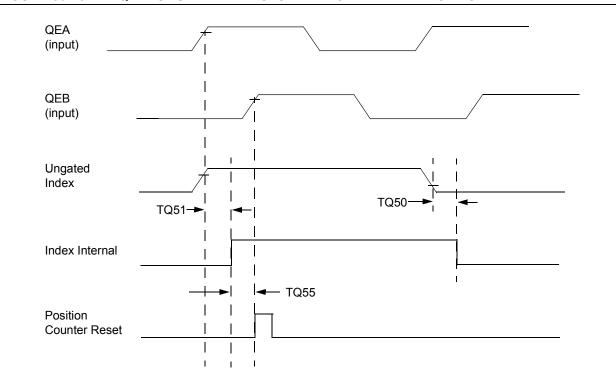


TABLE 30-29: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS

			(unless	otherwis	se stated) ∙40°C ≤ T.	3.0V to 3.6V A ≤ +85°C for Industrial A ≤ +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
MP10	TFPWM	PWM Output Fall Time	_	_		ns	See parameter D032
MP11	TRPWM	PWM Output Rise Time	—	—	_	ns	See parameter D031
MP20	Tfd	Fault Input ↓ to PWM I/O Change	_		50	ns	_
MP30	Tfh	Minimum Pulse Width	50	—	_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-30: QUADRATURE DECODER TIMING REQUIREM	ENTS
---	------


			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Мах	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time		6 Tcy	—	ns	
TQ31	ΤουΗ	Quadrature Input High Time		6 Tcy	_	ns	—
TQ35	TQUIN	Quadrature Input Period		12 TCY	_	ns	—
TQ36	ΤουΡ	Quadrature Phase Period		3 TCY	_	ns	—
TQ40	TQUFL	Filter Time to Recognize Low with Digital Filter	V,	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize Hig with Digital Filter	h,	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to **Section 15. "Quadrature Encoder** Interface (QEI)" in the "*dsPIC33F Family Reference Manual*". Please see the Microchip web site for the latest dsPIC33F Family Reference Manual sections.

© 2008 Microchip Technology Inc.

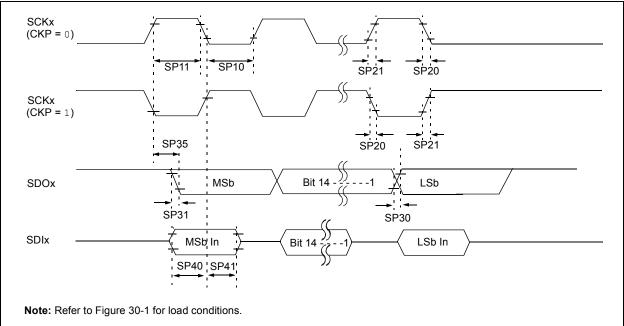

FIGURE 30-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

TABLE 30-31: QEI INDEX PULSE TIMING REQUIREMENTS

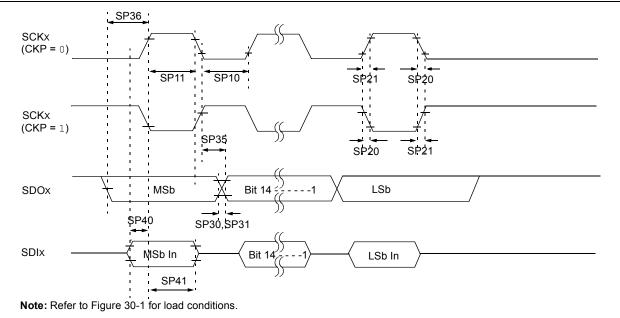
AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic			Min	Max	Units	Conditions	
TQ50	TqIL	Filter Time to Recognize with Digital Filter	Low,	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize with Digital Filter	High,	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized Counter Reset (ungated i		3 TCY	_	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

FIGURE 30-14: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

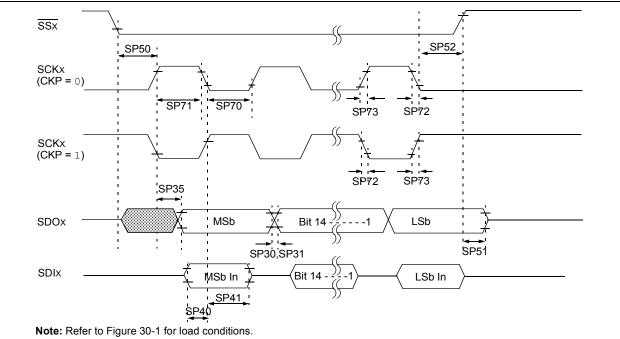
TABLE 30-32: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic ⁽¹⁾ Min			Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time	Tcy/2	—		ns	See Note 3	
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	See Note 3	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter D032 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—		ns	See parameter D031 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter D032 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See parameter D031 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		6	20	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

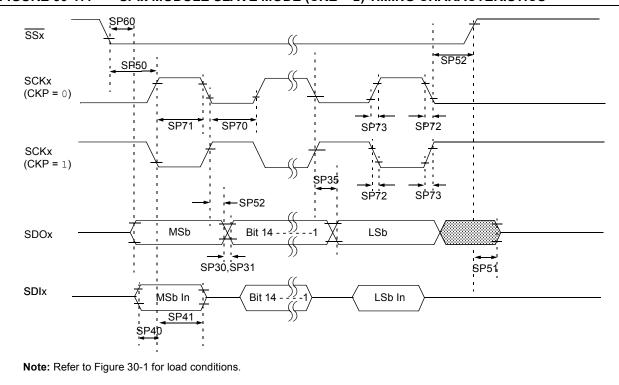

TABLE 30-33:	SPIX MODULE MASTER MODE	(CKE = 1)	TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time	Tcy/2	_		ns	See Note 3	
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	See Note 3	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter D032 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter D031 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter D032 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	—	ns	See parameter D031 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	_	_	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	—	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

- 2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 30-16: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 30-34: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	—		ns	—	
SP71	TscH	SCKx Input High Time	30	—		ns	—	
SP72	TscF	SCKx Input Fall Time	—	10	25	ns	See Note 3	
SP73	TscR	SCKx Input Rise Time	—	10	25	ns	See Note 3	
SP30	TdoF	SDOx Data Output Fall Time	_			ns	See parameter D032 and Note 3	
SP31	TdoR	SDOx Data Output Rise Time	_			ns	See parameter D031 and Note 3	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_		30	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	—	
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	—	ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 3	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy +40			ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

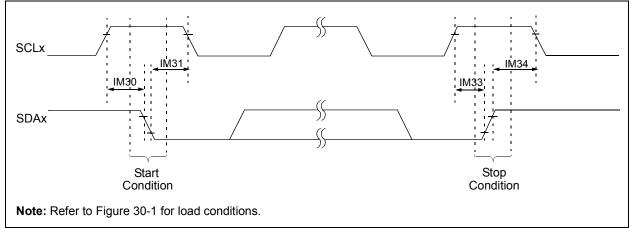
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

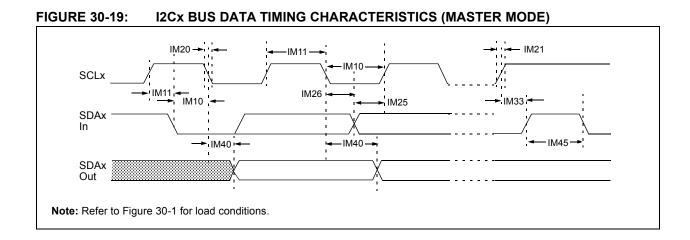
3: Assumes 50 pF load on all SPIx pins.

FIGURE 30-17: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	—	_	ns	—	
SP71	TscH	SCKx Input High Time	30	—		ns	—	
SP72	TscF	SCKx Input Fall Time	—	10	25	ns	See Note 3	
SP73	TscR	SCKx Input Rise Time	_	10	25	ns	See Note 3	
SP30	TdoF	SDOx Data Output Fall Time	_			ns	See parameter D032 and Note 3	
SP31	TdoR	SDOx Data Output Rise Time	_	_		ns	See parameter D031 and Note 3	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	120	—	_	ns	_	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	_	ns	_	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	-	—	50	ns	_	

TABLE 30-35: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS


Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

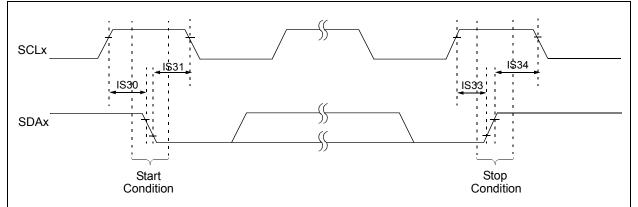
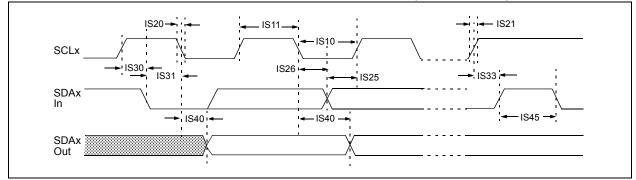
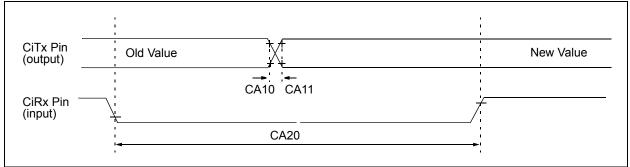

AC CH	ARACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Charact	teristic	Min ⁽¹⁾	Max	Units	Conditions			
IM10	TLO:SCL	Clock Low Time	100 kHz mode	00 kHz mode Tcy/2 (BRG + 1)		μs	_			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	—			
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be			
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF			
			1 MHz mode ⁽²⁾	_	100	ns				
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be			
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF			
			1 MHz mode ⁽²⁾	_	300	ns				
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	_			
		Setup Time	400 kHz mode	100	_	ns				
			1 MHz mode ⁽²⁾	40	_	ns				
IM26	THD:DAT	DAT Data Input Hold Time	100 kHz mode	0		μs	_			
			400 kHz mode	0	0.9	μs				
			1 MHz mode ⁽²⁾	0.2	_	μs				
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	Only relevant for			
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	condition			
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	After this period the			
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	generated			
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—			
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μs				
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs				
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns	_			
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns				
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns				
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	—			
		From Clock	400 kHz mode	—	1000	ns	—			
			1 MHz mode ⁽²⁾	_	400	ns	_			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be			
			400 kHz mode	1.3	—	μs	free before a new			
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can sta			
IM50	Св	Bus Capacitive L	oading	_	400	pF				

TABLE 30-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" in the "*dsPIC33F Family Reference Manual*". Please see the Microchip web site for the latest dsPIC33F Family Reference Manual sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 30-21: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)



АС СНА	RACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic		Min	Max	Units	Conditions			
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz			
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz			
			1 MHz mode ⁽¹⁾	0.5	—	μs	—			
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz			
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz			
			1 MHz mode ⁽¹⁾	0.5	—	μS	_			
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from			
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF			
			1 MHz mode ⁽¹⁾	—	100	ns				
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from			
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF			
			1 MHz mode ⁽¹⁾	—	300	ns				
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—			
		Setup Time	400 kHz mode	100	_	ns				
			1 MHz mode ⁽¹⁾	100		ns				
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μs	—			
			400 kHz mode	0	0.9	μs				
			1 MHz mode ⁽¹⁾	0	0.3	μs				
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated			
		Setup Time	400 kHz mode	0.6	—	μs	Start condition			
			1 MHz mode ⁽¹⁾	0.25	—	μS				
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μs	After this period, the first			
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated			
			1 MHz mode ⁽¹⁾	0.25	—	μS				
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	_	μS	—			
		Setup Time	400 kHz mode	0.6	_	μS				
			1 MHz mode ⁽¹⁾	0.6	—	μS				
IS34	THD:ST	Stop Condition	100 kHz mode	4000	—	ns	—			
	0	Hold Time	400 kHz mode	600	_	ns				
			1 MHz mode ⁽¹⁾	250		ns				
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns				
		From Clock	400 kHz mode	0	1000	ns				
			1 MHz mode ⁽¹⁾	0	350	ns				
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free			
			400 kHz mode	1.3	_	μS	before a new transmission			
			1 MHz mode ⁽¹⁾	0.5		μS	can start			
IS50	Св	Bus Capacitive Lo	ading	—	400	pF				

TABLE 30-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

3: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 30-22: ECAN MODULE I/O TIMING CHARACTERISTICS

TABLE 30-38: ECAN MODULE I/O TIMING REQUIREMENTS

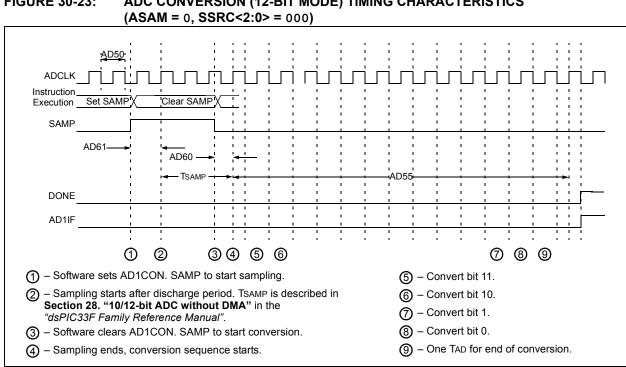
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C					
Param No. Symbol Characteristic ⁽¹⁾			Min	Conditions				
CA10	TioF	Port Output Fall Time	—	—	_	ns	See parameter D032	
CA11	TioR	Port Output Rise Time	_		_	ns	See parameter D031	
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120			ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHA	ARACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$										
Param No.	Symbol	Characteristic	Min. Typ Max. Units				Conditions						
Device Supply													
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	_	Lesser of VDD + 0.3 or 3.6	V	_						
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V	—						
			Reference	Inputs									
AD05	VREFH	Reference Voltage High	AVss + 2.7	_	AVdd	V	See Note 1						
AD05a			3.0	_	3.6	V	Vrefh = AVdd Vrefl = AVss = 0						
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 2.7	V	See Note 1						
AD06a			0		0	V	Vrefh = AVdd Vrefl = AVss = 0						
AD07	VREF	Absolute Reference Voltage	2.7		3.6	V	VREF = VREFH - VREFL						
AD08	IREF	Current Drain	—	400	550 10	μΑ μΑ	ADC operating ADC off						
	•	•	Analog I	nput									
AD12	Vinh	Input Voltage Range Vinн	VINL	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input						
AD13	VINL	Input Voltage Range VINL	VREFL	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input						
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC						

TABLE 30-39: ADC MODULE SPECIFICATIONS


Note 1: These parameters are not characterized or tested in manufacturing.

АС СНА	RACTERIS	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
		ADC Accuracy (12-bit Mod	de) – Mea	sureme	nts with	externa	I VREF+/VREF-		
AD20a	Nr	Resolution	1:	2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD23a	Gerr	Gain Error	1.25	1.5	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25a	—	Monotonicity	_			—	Guaranteed		
		ADC Accuracy (12-bit Mo	de) – Mea	asureme	nts with	interna	I VREF+/VREF-		
AD20a	Nr	Resolution	1:	2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23a	Gerr	Gain Error	2	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	EOFF	Offset Error	2	3	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25a	_	Monotonicity	—	_		—	Guaranteed		
		Dynamie	c Perforn	nance (1	2-bit Mo	de)			
AD30a	THD	Total Harmonic Distortion	-77	-69	-61	dB	—		
AD31a	SINAD	Signal to Noise and Distortion	59	63	64	dB	_		
AD32a	SFDR	Spurious Free Dynamic Range	63	72	74	dB	_		
AD33a	Fnyq	Input Signal Bandwidth	—	—	250	kHz	—		
AD34a	ENOB	Effective Number of Bits	10.95	11.1	—	bits	_		

TABLE 30-40: ADC MODULE SPECIFICATIONS (12-BIT MODE)

АС СНА	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-	
AD20b	Nr	Resolution	1(0 data bi	ts	bits		
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	1	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	—	Monotonicity	—	—	—	—	Guaranteed	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with i	nternal '	VREF+/VREF-	
AD20b	Nr	Resolution	1(0 data bi	ts	bits		
AD21b	INL	Integral Nonlinearity	-1	_	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23b	Gerr	Gain Error	1	5	6	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	1	2	3	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25b	—	Monotonicity	_	_	_	—	Guaranteed	
		Dynamic	Performa	nce (10	-bit Mod	e)		
AD30b	THD	Total Harmonic Distortion	—	-64	-67	dB	—	
AD31b	SINAD	Signal to Noise and Distortion	_	57	58	dB	_	
AD32b	SFDR	Spurious Free Dynamic Range	_	60	62	dB	_	
AD33b	Fnyq	Input Signal Bandwidth	_	_	550	kHz	_	
AD34b	ENOB	Effective Number of Bits	9.1	9.7	9.8	bits		

TABLE 30-41: ADC MODULE SPECIFICATIONS (10-BIT MODE)

ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS FIGURE 30-23:

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Characteristic Min. Typ Max. Units						
		Cloc	k Parame	ters			•		
AD50	Tad	ADC Clock Period	117.6			ns			
AD51	tRC	ADC Internal RC Oscillator Period	—	250		ns			
		Con	version R	ate					
AD55	tCONV	Conversion Time		14 Tad		ns			
AD56	FCNV	Throughput Rate	_	_	500	Ksps			
AD57	TSAMP	Sample Time	3 Tad	—	_	_			
		Timir	ng Parame	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	—	3 Tad	—	Auto convert trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad	_	_		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 Tad	_	—	_		
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	—	—	20	μS	_		

TABLE 30-42: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

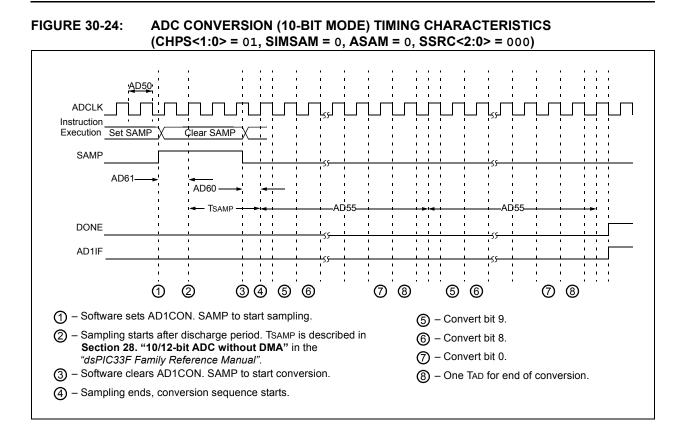
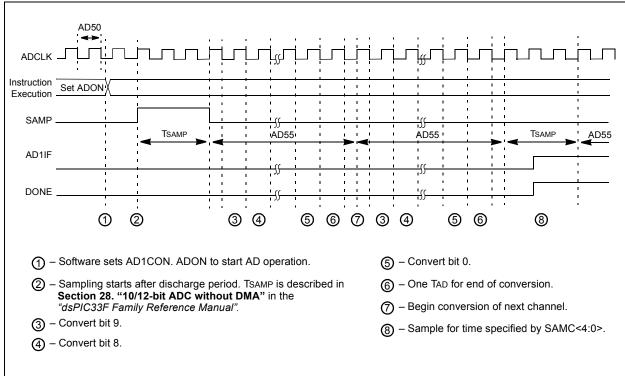



FIGURE 30-25: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions			
AD50	TAD	ADC Clock Period	76	_	_	ns				
AD51	tRC	ADC Internal RC Oscillator Period	_	250	_	ns				
		Con	version F	Rate						
AD55	tCONV	Conversion Time		12 Tad	_	—				
AD56	FCNV	Throughput Rate		_	1.1	Msps				
AD57	TSAMP	Sample Time	2 Tad	_		_				
		Timin	g Param	eters						
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad	—	3 Tad	—	Auto-Convert Trigger not selected			
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	—	3 Tad	—	_			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 TAD	—	—	—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	—	—	20	μs	—			

TABLE 30-43: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

TABLE 30-44: DAC MODULE SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No. Symbol Characteristic				Тур	Max.	Units	Conditions	
		Clo	ck Para	meters				
	VOMAX	Output Maximum Voltage	2.65	—	_	V		
	VOMIN	Output Minimum Voltage	_		0.65	V		
	VRES	Resolution	_	16-bits	_	_		
		Gain Error		-2%				
		Offset Error		_	±30	MV	Dependent on voltage reference stability	
	Differential Non-Linearity (DNL)			±0.1	_	LSB	Relative to 14-bit accuracy	
		Integral Non-Linearity (INL)	_	±0.2	_	LSB	Relative to 14-bit accuracy	

© 2008 Microchip Technology Inc.

TABLE 30-45: DAC MODULE SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions			
			Clock Pa	aramete	rs				
		Clock frequency		—	25.6	MHz	Clock		
		Sample Rate	0		100	kHz			
		Input data frequency	0		45	kHz	Sampling frequency = 100 kHz		
		Initialization period	1024			Clks	Time before first sample		
		Signal to Noise Ratio	e Ratio — 90 dB Sampling frequency = 96						
		Signal to Noise Ratio and Distortion Ratio	82			dB	Sampling frequency = 96 kHz		

TABLE 30-46: COMPARATOR TIMING SPECIFICATIONS

АС СНА				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions						
300	TRESP	Response Time ^(1,2)		150	400	ns			
301 TMC2OV Comparator Mode Change to Output Valid ⁽¹⁾			_		10	μS			

Note 1: Parameters are characterized but not tested.

2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

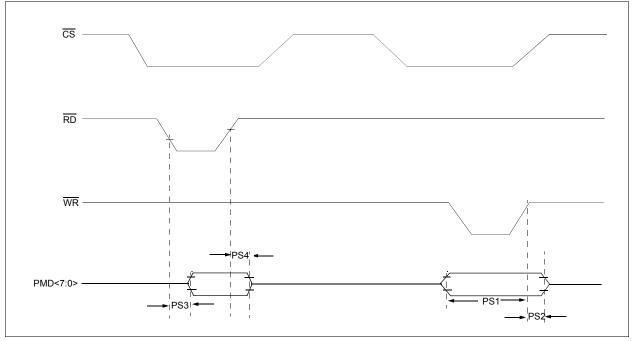
TABLE 30-47: COMPARATOR MODULE SPECIFICATIONS

			$\label{eq:constraint} \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
D300	VIOFF	Input Offset Voltage ⁽¹⁾		±10	—	mV			
D301	VICM	Input Common Mode Voltage ⁽¹⁾	0	—	AVDD-1.5V	V			
D302	CMRR	Common Mode Rejection Ratio ⁽¹⁾	-54		—	dB			

Note 1: Parameters are characterized but not tested.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

TABLE 30-48: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS

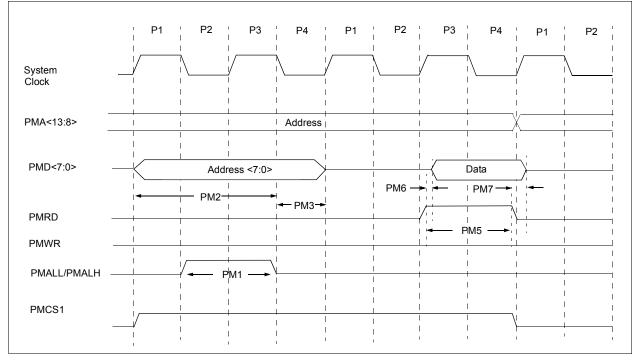

AC CHA	CHARACTERISTICS (unless		(unless oth	Standard Operating Conditions: 3.0V to 3.6Vunless otherwise stated)Dperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				Conditions	
VR310	TSET	Settling Time ⁽¹⁾	— — 10 μs					

Note 1: Setting time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

TABLE 30-49: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard O (unless oth Operating te	erwise	ure -40°C≤	Ta≤ +	o 3.6V 85°C for Industrial 25°C for Extended
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb	
VRD311	CVRAA	Absolute Accuracy	— — 0.5 LSb				
VRD312	CVRur	Unit Resistor Value (R)	—	2k		Ω	

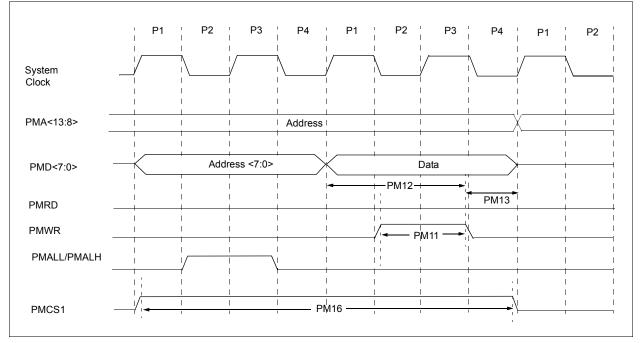
FIGURE 30-26: PARALLEL SLAVE PORT TIMING DIAGRAM



© 2008 Microchip Technology Inc.

TABLE 30-50: SETTING TIME SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indu $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extermine					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions			Conditions	
PS1	TdtV2wrH	Data in Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20	_	_	ns	
PS2	TwrH2dtl	WR or CS Inactive to Data-In Invalid (hold time)	20	_	_	ns	
PS3	TrdL2dtV	RD and CS to Active Data-Out Valid	—	—	80	ns	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	10	_	30	ns	


FIGURE 30-27: PARALLEL MASTER PORT READ TIMING DIAGRAM

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industr} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extend} \end{array}$				
Param No.	Characteristic	Min. Typ Max. Units Condition				Conditions
PM1	PMALL/PMALH Pulse Width	_	0.5 TCY	_	ns	
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	0.75 TCY	—	ns	
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	—	ns	
PM5	PMRD Pulse Width	_	0.5 TCY	_	ns	
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	—	—	_	ns	
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	—	—	ns	

TABLE 30-51: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

FIGURE 30-28: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Ind} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Ext} \end{array}$				5°C for Industrial
Param No.	Characteristic	Min. Typ Max. Units Conditio			Conditions	
PM11	PMWR Pulse Width		0.5 TCY	_	ns	
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	—	—	ns	
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	—	—	ns	
PM16	PMCSx Pulse Width	Tcy - 5	_	_	ns	

TABLE 30-52: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

31.0 PACKAGING INFORMATION

28-Lead SPDIP

28-Lead SOIC (.300")

28-Lead QFN-S

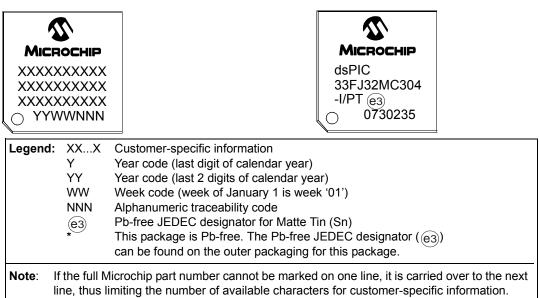
44-Lead QFN

44-Lead TQFP

Example dsPIC33FJ32MC 302-E/SP (e3)

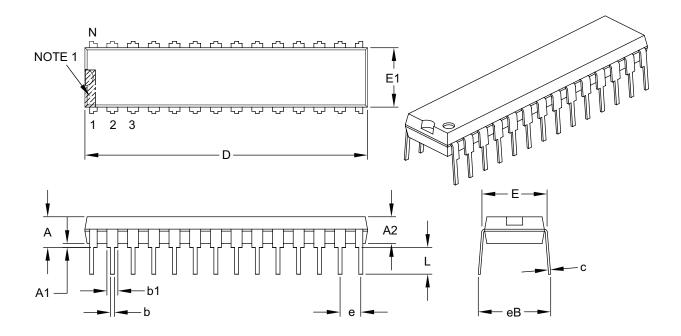
M 0730235

Example


Example

Example

Example



© 2008 Microchip Technology Inc.

31.1 Package Details

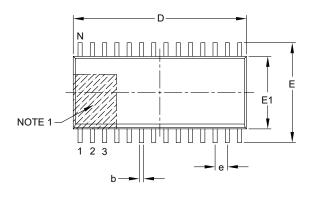
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

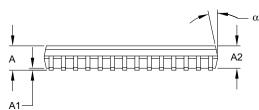
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

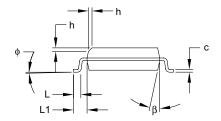
	Units		INCHES		
Dimensio	on Limits	MIN	MIN NOM		
Number of Pins	Ν		28	•	
Pitch	е		.100 BSC		
Top to Seating Plane	Α	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	Е	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-070B

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ARAR

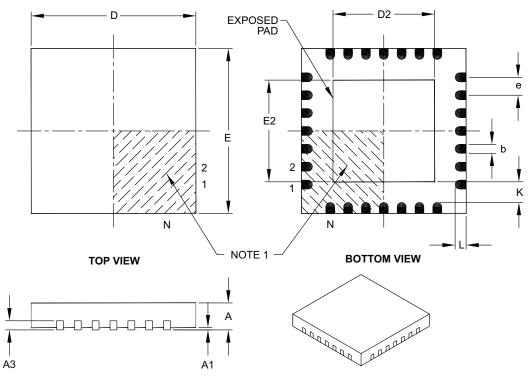
	Units			MILLMETERS			
	Dimension Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	e		1.27 BSC				
Overall Height	A	_	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E	10.30 BSC					
Molded Package Width	E1	7.50 BSC					
Overall Length	D	17.90 BSC					
Chamfer (optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1		1.40 REF				
Foot Angle Top	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	_	15°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052E

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

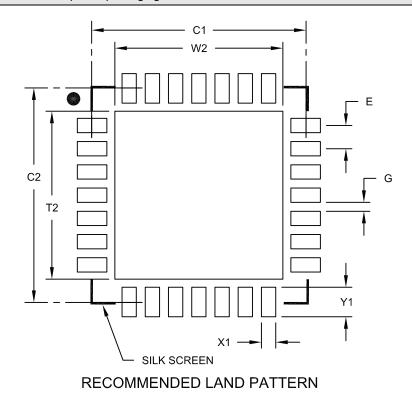
	Units MILLIMETERS			5
Dime	ension Limits	MIN	MAX	
Number of Pins	N	28		
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.70
Contact Width	b	0.23	0.38	0.43
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

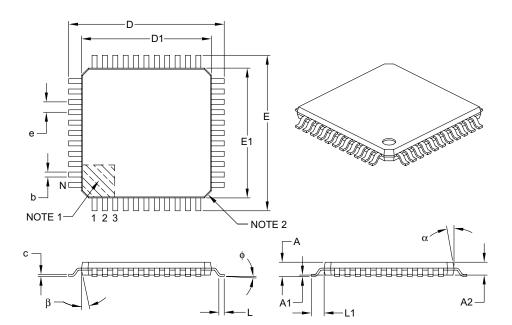
Microchip Technology Drawing C04-124B

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

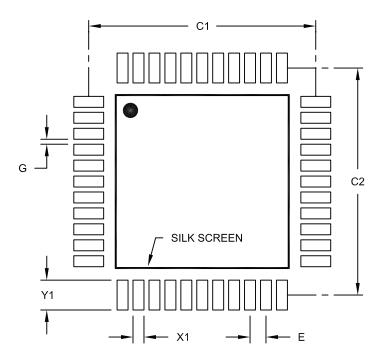
	Units		MILLIMETERS		
	Dimension Limits	MIN	MAX		
Number of Leads	N		44		
Lead Pitch	е		0.80 BSC		
Overall Height	А	_	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

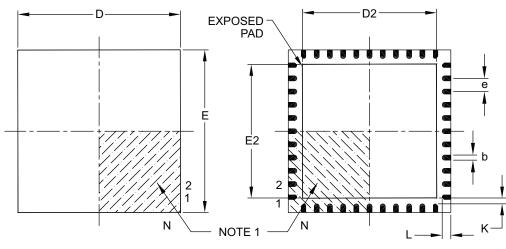
44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

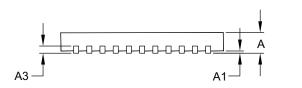
	MILLIM	FTFRS		
Units Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

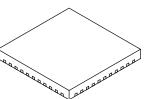
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A


44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

BOTTOM VIEW

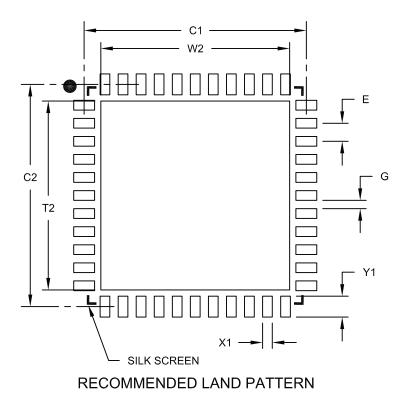
	Units		MILLIMETERS	5
	Dimension Limits MIN NOM			MAX
Number of Pins	N		44	
Pitch	e		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		ETERS
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (August 2007)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the *dsPIC33F Family Reference Manual*, which can be obtained from the Microchip website (www.microchip.com).

The major changes are referenced by their respective section in the following table.

TABLE A-1:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Note 1 added to all pin diagrams (see "Pin Diagrams") Add External Interrupts column and Note 4 to the "dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, and dsPIC33FJ128MCX02/X04 Controller Families" table
Section 1.0 "Device Overview"	Updated parameters PMA0, PMA1, and PMD0 through PMPD7 (Table 1-1)
Section 3.0 "Memory Organization"	Updated FAEN bits in Table 3-8
Section 6.0 "Interrupt Controller"	IFS0-IFSO4 changed to IFSx (see Section 6.3.2 "IFSx") IEC0-IEC4 changed to IECx (see Section 6.3.3 "IECx") IPC0-IPC19 changed to IPCx (see Section 6.3.4 "IPCx")
Section 7.0 "Direct Memory Access (DMA)"	Updated parameter PMP (see Table 7-1)
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources" Updated TUN<5:0> (OSCTUN<5:0>) bit description (see Register 8-4)
Section 21.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Added Note 2 to Figure 21-3
Section 27.0 "Special Features"	Added Note 2 to Figure 27-1 Added parameter FICD in Table 27-1 Added parameters BKBUG, COE, JTAGEN, and ICS in Table 27-2 Added Note after second paragraph in Section 27.2 "On-Chip Voltage Regulator"

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Updated Max MIPS for temperature range of -40°C to +125°C in Table 30-1
	Updated typical values in Thermal Packaging Characteristics in Table 30-3
	Added parameters DI11 and DI12 to Table 30-9
	Updated miminum values for parameters D136 (TRW) and D137 (TPE) and removed typical values in Table 30-12
	Added Extended temperature range to Table 30-13
	Updated Note 2 in Table 30-38
	Updated parameter AD63 and added Note 3 to Table 30-42 and Table 30-43

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

INDEX

Α

A/D Convertor
A/D Converter
DMA
Initialization
Key Features
AC Characteristics
Internal RC Accuracy
Load Conditions
ADC Module
ADC11 Register Map45, 46
Alternate Vector Table (AIVT)
Arithmetic Logic Unit (ALU)26
Assembler
MPASM Assembler
D
В
Barrel Shifter
Bit-Reversed Addressing61
Example61
Implementation61
Sequence Table (16-Entry)62
Block Diagrams
16-bit Timer1 Module
A/D Module
Connections for On-Chip Voltage Regulator
Device Clock
DSP Engine
dsPIC33FJ32MC302/304,
dsPIC33FJ64MCX02/X04,
and dsPIC33FJ128MCX02/X04
dsPIC33FJ32MC302/304,
dsPIC33FJ64MCX02/X04,
and dsPIC33FJ128MCX02/X04 CPU Core 20
ECAN Module
Input Capture
Output Compare
PLL
PWM Module
Quadrature Encoder Interface
Reset System
Shared Port Structure
SPI
Timer2 (16-bit)
Timer2/3 (32-bit)
UART
Watchdog Timer (WDT)
С
C Compilers
MPLAB C18
MPLAB C30
Clock Switching
Enabling 145
Sequence145
Code Examples

CPU	
Control Register	22
CPU Clocking System	136
PLL Configuration	137
Selection	136
Sources	136
Customer Change Notification Service	393
Customer Notification Service	393
Customer Support	393

D

Data Accumulators and Adder/Subtracter	28
Data Space Write Saturation	30
Overflow and Saturation	28
Round Logic	29
Write Back	29
Data Address Space	33
Alignment	33
Memory Map for dsPIC33FJ128MC202/204	
and dsPIC33FJ64MC202/204 Devices	
with 8 KB RAM	35
Memory Map for dsPIC33FJ128MC802/804	
and dsPIC33FJ64MC802/804 Devices	
with 16 KB RAM	36
Memory Map for dsPIC33FJ32MC302/304	
Devices with 4 KB RAM	34
Near Data Space	33
Software Stack	58
Width	33
DC Characteristics	330
I/O Pin Input Specifications	335
I/O Pin Output Specifications	337
Idle Current (IDOZE)	334
Idle Current (IIDLE)	333
Operating Current (IDD)	332
Power-Down Current (IPD)	334
Program Memory	
Temperature and Voltage Specifications	331
Development Support	325
DMA Module	
DMA Register Map	47
DMAC Registers	125
DMAxCNT	125
DMAxCON	125
DMAxPAD	125
DMAxREQ	125
DMAxSTA	125
DMAxSTB	125
Doze Mode	148
DSP Engine	26
Multiplier	

Ε

ECAN Module	
CiBUFPNT1 register	. 245
CiBUFPNT2 register	. 246
CiBUFPNT3 register	. 246
CiBUFPNT4 register	. 247
CiCFG1 register	. 243
CiCFG2 register	
CiCTRL1 register	. 236
CiCTRL2 register	. 237
CiEC register	. 243
CIFCTRL register	. 239
CiFEN1 register	. 245
CiFIFO register	. 240

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

CiFMSKSEL1 register 2	49
CiFMSKSEL2 register	250
CiINTE register	42
CiINTF register2	
CiRXFnEID register	
CiRXFnSID register	
CiRXFUL1 register	
-	
CiRXFUL2 register	
CiRXMnEID register	
CiRXMnSID register	
CiRXOVF1 register2	
CiRXOVF2 register2	
CiTRmnCON register2	254
CiVEC register2	
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	
ECAN1 Register Map (C1CTRL1.WIN = 0)	49
ECAN1 Register Map (C1CTRL1.WIN = 1)	50
Frame Types2	
Modes of Operation2	
Overview	
ECAN Registers	.00
Acceptance Filter Enable Register (CiFEN1)	15
Acceptance Filter Extended Identifier	45
	40
Register n (CiRXFnEID)2	49
Acceptance Filter Mask Extended Identifier	
Register n (CiRXMnEID)2	251
Acceptance Filter Mask Standard Identifier	
Register n (CiRXMnSID)2	251
Acceptance Filter Standard Identifier	
Register n (CiRXFnSID)2	48
Baud Rate Configuration Register 1 (CiCFG1)2	43
Baud Rate Configuration Register 2 (CiCFG2)2	44
Control Register 1 (CiCTRL1)2	
Control Register 2 (CiCTRL2)2	
FIFO Control Register (CiFCTRL)2	
FIFO Status Register (CiFIFO)	
Filter 0-3 Buffer Pointer Register (CiBUFPNT1)2	
Filter 12-15 Buffer Pointer Register	
(CiBUFPNT4)	47
Filter 15-8 Mask Selection Register	
(CiFMSKSEL2)2	50
Filter 4-7 Buffer Pointer Register (CiBUFPNT2)2	40
Filter 7-0 Mask Selection Register	
(CiFMSKSEL1)2	
Filter 8-11 Buffer Pointer Register (CiBUFPNT3)2	
Interrupt Code Register (CiVEC)	38
Interrupt Enable Register (CiINTE)2	
Interrupt Flag Register (CiINTF)2	
Receive Buffer Full Register 1 (CiRXFUL1)2	
Receive Buffer Full Register 2 (CiRXFUL2)2	52
Receive Buffer Overflow Register 2 (CiRXOVF2)2	53
Receive Overflow Register (CiRXOVF1)2	53
ECAN Transmit/Receive Error Count Register (CiEC)2	43
ECAN TX/RX Buffer m Control Register	
(CiTRmnCON)	254
Electrical Characteristics	
AC	
Enhanced CAN Module	
Equations	26
Device Operating Frequency1	
Errata	1.1

F
Flash Program Memory67
Control Registers
Operations
Programming Algorithm
RTSP Operation
Table Instructions
Flexible Configuration
1
I/O Ports
Parallel I/O (PIO) 149
Write/Read Timing 150
I ² C
Operating Modes 219
Registers
In-Circuit Debugger
In-Circuit Emulation
In-Circuit Serial Programming (ICSP) 307, 313
Input Capture 189
Registers 190
Input Change Notification 151
Instruction Addressing Modes 58
File Register Instructions 58
Fundamental Modes Supported 59
MAC Instructions 59
MCU Instructions 58
Move and Accumulator Instructions 59
Other Instructions
Instruction Set
Overview
Summary
Instruction-Based Power-Saving Modes
Idle
Sleep
Internal RC Oscillator
Use with WDT
Internet Address
Interrupt Control and Status Registers
IECx
IFSx
INTCON1
INTCONZ
IPCX
Initialization
Interrupt Disable
Interrupt Service Routine
Interrupt Vector Table (IVT)
Interrupts Coincident with Power Save Instructions 148
J
JTAG Boundary Scan Interface
JTAG Interface
017 C Intellate
Μ

Memory Organization	
Microchip Internet Web Site	
Modes of Operation	
Disable	235
Initialization	235
Listen All Messages	235
Listen Only	235
Loopback	235
Normal Operation	235

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, AND dsPIC33FJ128MCX02/X04

Modulo Addressing	60
Applicability	
Operation Example	
Start and End Address	
W Address Register Selection	60
Motor Control PWM 19	95
Motor Control PWM Module	
2-Output Register Map	43
6-Output Register Map	42
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	27
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	27
MPLAB Integrated Development	
Environment Software	25
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	27
MPLINK Object Linker/MPLIB Object Librarian	

Ν

••	
NVM Module	
Register Map	

0	
Open-Drain Configuration	150
Output Compare	191

Ρ

•	
Packaging	
Details	
Marking	
Peripheral Module Disable (PMD)	148
PICSTART Plus Development Programmer	
Pinout I/O Descriptions (table)	
PMD Module	
Register Map	
PORTA	
Register Map	55, 56
PORTB	
Register Map	
Power-on Reset (POR)	78
Power-Saving Features	147
Clock Frequency and Switching	
Program Address Space	
Construction	
Data Access from Program Memory	
Using Program Space Visibility	
Data Access from Program Memory Using	
Table Instructions	65
Data Access from, Address Generation	64
Memory Map	
Table Read Instructions	
TBLRDH	65
TBLRDL	65
Visibility Operation	66
Program Memory	
Interrupt Vector	32
Organization	32
Reset Vector	32
Q	
Quadrature Encoder Interface (QEI)	

	200
Quadrature Encoder Inte	face (QEI) Module
Register Map	

R

ĸ	
Reader Response	394
•	004
Register Map	
CRC	55
Dual Comparator	55
Parallel Master/Slave Port	54
Real-Time Clock and Calendar	
	55
Registers	
AD1CHS0 (ADC1 Input Channel 0 Select	270
AD1CHS123 (ADC1 Input Channel 1,	
2, 3 Select)	268
AD1CON1 (ADC1 Control 1)	
AD1CON2 (ADC1 Control 2)	265
AD1CON3 (ADC1 Control 3)	266
AD1CON4 (ADC1 Control 4)	
AD1CSSL (ADC1 Input Scan Select Low)	
AD 1055L (ADCT Input Scan Select Low)	212
AD1PCFGL (ADC1 Port Configuration Low)	272
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	245
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	246
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)	
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)	
CiCFG1 (ECAN Baud Rate Configuration 1)	243
CiCFG2 (ECAN Baud Rate Configuration 2)	
CiCTRL1 (ECAN Control 1)	
CiCTRL2 (ECAN Control 2)	
CiEC (ECAN Transmit/Receive Error Count)	243
CIFCTRL (ECAN FIFO Control)	239
CiFEN1 (ECAN Acceptance Filter Enable)	245
CiFIFO (ECAN FIFO Status)	240
CiFMSKSEL1 (ECAN Filter 7-0 Mask	
Selection)	250
CiINTE (ECAN Interrupt Enable)	
CIINTF (ECAN Interrupt Flag)	241
CiRXFnEID (ECAN Acceptance Filter n	
Extended Identifier)	249
CiRXFnSID (ECAN Acceptance Filter n	
	240
Standard Identifier)	
CiRXFUL1 (ECAN Receive Buffer Full 1)	
CiRXFUL2 (ECAN Receive Buffer Full 2)	252
CIRXMnEID (ECAN Acceptance Filter	
Mask n Extended Identifier)	251
	201
CiRXMnSID (ECAN Acceptance Filter	
Mask n Standard Identifier)	251
CiRXOVF1 (ECAN Receive Buffer Overflow 1)	253
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	
	200
CiTRBnSID (ECAN Buffer n	
Standard Identifier) 255, 256,	258
CiTRmnCON (ECAN TX/RX Buffer m Control)	254
CiVEC (ECAN Interrupt Code)	238
CLKDIV (Clock Divisor)	
CORCON (Core Control) 24	
DFLTCON (QEI Control)	212
DMACS0 (DMA Controller Status 0)	
DMACS1 (DMA Controller Status 1)	
DMAxCNT (DMA Channel x Transfer Count)	
DMAxCON (DMA Channel x Control)	126
DMAxPAD (DMA Channel x Peripheral	
Address)	120
DMAxREQ (DMA Channel x IRQ Select)	127
DMAxSTA (DMA Channel x RAM Start	
Address A)	128
DMAxSTB (DMA Channel x RAM Start	0
	400
Address B)	
DSADR (Most Recent DMA RAM Address)	133
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
120X CLOX Clave Would Address Wash)	220
I2CxSTAT (I2Cx Status)	223
IFS0 (Interrupt Flag Status 0)), 97

IFS1 (Interrupt Flag Status 1)92, 9	99
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTTREG Interrupt Control and Status Register12	
IPC0 (Interrupt Priority Control 0)1	
IPC1 (Interrupt Priority Control 1)1	
IPC11 (Interrupt Priority Control 11)1	
IPC14 (Interrupt Priority Control 14)1	15
IPC15 (Interrupt Priority Control 15)1	
IPC16 (Interrupt Priority Control 16)1	
IPC17 (Interrupt Priority Control 17)1	
IPC18 (Interrupt Priority Control 18) 119, 12	20
IPC2 (Interrupt Priority Control 2)1	
IPC3 (Interrupt Priority Control 3)10	
IPC4 (Interrupt Priority Control 4)1	38
IPC5 (Interrupt Priority Control 5)1	
IPC6 (Interrupt Priority Control 6)1	
IPC7 (Interrupt Priority Control 7)1	
IPC8 (Interrupt Priority Control 8)1	
IPC9 (Interrupt Priority Control 9)1	
NVMCON (Flash Memory Control)	39
NVMKEY (Nonvolatile Memory Key)	
OCxCON (Output Compare x Control)19	93
OSCCON (Oscillator Control)1	
OSCTUN (FRC Oscillator Tuning)14	
P1DC3 (PWM Duty Cycle 3)20	
PLLFBD (PLL Feedback Divisor)14	
PWMxCON1 (PWM Control 1)20)1
PWMxCON2 (PWM Control 2)20	
PxDC1 (PWM Duty Cycle 1)20	
PxDC2 (PWM Duty Cycle 2)	
PxDTCON1 (Dead-Time Control 1)	
PxDTCON2 (Dead-Time Control 2)	
PxFLTACON (Fault A Control)	
PxOVDCON (Override Control)	
PxSECMP (Special Event Compare)	00
PxTCON (PWM Time	
Base Control)	
PxTMR (PWM Timer Count Value)	
PxTPER (PWM Time Base Period)	
QEICON (QEI Control)	
RCON (Reset Control) SPIxCON1 (SPIx Control 1)2	
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)2 SR (CPU Status)2	14
T1CON (Timer1 Control)	20
TCxCON (Input Capture x Control)	5 <u>2</u> 20
TxCON (Type B Time Base Control)11 TyCON (Type C Time Base Control)	
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)23	
Reset	50
Illegal Opcode	20
Trap Conflict	
Uninitialized W Register	
Reset Sequence	
Resets	

S

•	
Serial Peripheral Interface (SPI)	
Software Reset Instruction (SWR)	
Software Simulator (MPLAB SIM)	326
Software Stack Pointer, Frame Pointer	
CALLL Stack Frame	58
Special Features of the CPU	307
SPI Module	
SPI1 Register Map	45
Symbols Used in Opcode Descriptions	318
System Control	
Register Map	56, 57

Т

1	
Temperature and Voltage Specifications	
AC	339
Timer1	181
Timer2/3	183
Timing Characteristics	
ČLKO and I/O	342
Timing Diagrams	
10-bit ADC Conversion (CHPS = 01,	
SIMSAM = 0, ASAM = 0,	
SSRC = 000)	368
12-bit ADC Conversion (ASAM = 0,	
SSRC = 000)	366
Brown-out Situations.	
ECAN I/O	
External Clock	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture (CAPx)	
Motor Control PWM	
Motor Control PWM Fault	
OC/PWM	
Output Compare (OCx)	
QEA/QEB Input	
QEI Module Index Pulse	352
Reset, Watchdog Timer, Oscillator	~ 4 ~
Start-up Timer and Power-up Timer	343
SPIx Master Mode (CKE = 0)	
SPIx Master Mode (CKE = 1)	
SPIx Slave Mode (CKE = 0)	
SPIx Slave Mode (CKE = 1)	
Timer1, 2, 3 External Clock	
TimerQ (QEI Module) External Clock	347
Timing Requirements	
CLKO and I/O	
External Clock	340
Input Capture	348
Timing Specifications	
10-bit ADC Conversion Requirements	369
12-bit ADC Conversion Requirements	
CAN I/O Requirements	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	361
Motor Control PWM Requirements	350
Output Compare Requirements	348
PLL Clock	341
QEI External Clock Requirements	347
QEI Index Pulse Requirements	352
Quadrature Decoder Requirements	
Reset, Watchdog Timer, Oscillator	
Start-up Timer, Power-up Timer	
and Brown-out Reset Requirements	344
Simple OC/PWM Mode Requirements	349

SPIx Master Mode (CKE = 0) Requirements	353
SPIx Master Mode (CKE = 1) Requirements	354
SPIx Slave Mode (CKE = 0) Requirements	355
SPIx Slave Mode (CKE = 1) Requirements	
Timer1 External Clock Requirements	
Timer2 External Clock Requirements	346
Timer3 External Clock Requirements	346

U

UART Module	
UART1 Register Map	
Universal Asynchronous Receiver	
Transmitter (UART)	
Using the RCON Status Bits	
v	
Voltage Regulator (On-Chip)	
W	
Watchdog Time-out Reset (WDTR)	79
Watchdog Timer (WDT)	307, 312
Programming Considerations	
WWW Address	

WWW Address.	-	
	Support	

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers receives e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From:	Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Applic	ation (optional):	
Would	l you like a reply?YN	
Devic	e: dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04, dsPIC33FJ128MCX02/X04	, and Literature Number: DS70291B
Quest	ions:	
1. W	hat are the best features of this document?	
_		
2. H	ow does this document meet your hardware and software	development needs?
_		
3. D	o you find the organization of this document easy to follow	/? If not, why?
_		
4. W	hat additions to the document do you think would enhanc	e the structure and subject?
5. W	hat deletions from the document could be made without a	ffecting the overall usefulness?
6. Is	there any incorrect or misleading information (what and w	/here)?
_		
7. H	ow would you improve this document?	
_		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Tape and Reel Fla Temperature Ran	mark mily v Size (KE ag (if app uge]	Examples: a) dsPIC33FJ32MC302-E/SP: Motor Control dsPIC33, 32 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	33 =	16-bit Digital Signal Controller	
Flash Memory Family:	FJ =	Flash program memory, 3.3V	
Product Group:	MC2 = MC3 = MC8 =		
Pin Count:		28-pin 44-pin	
Temperature Range:		-40°C to+85°C (Industrial) -40°C to+125°C (Extended)	
Package:			

© 2008 Microchip Technology Inc.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/02/08